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Abstract		11	

Does	natural	selection	favor	veridical	perceptions—those	which	accurately,	though	perhaps	12	

not	exhaustively,	depict	objective	reality?	Prominent	vision	scientists	and	evolutionary	13	

theorists	claim	that	it	does.	Here	we	formalize	this	claim	using	the	tools	of	evolutionary	14	

game	theory	and	Bayesian	decision	theory.	We	then	present	and	prove	a	"Fitness-Beats-15	

Truth	(FBT)	Theorem"	which	shows	that	the	claim	is	false.	We	find	that	increasing	the	16	

complexity	of	objective	reality,	or	perceptual	systems,	or	the	temporal	dynamics	of	fitness	17	

functions,	increases	the	selection	pressures	against	veridical	perceptions.	We	illustrate	the	18	

FBT	Theorem	with	a	specific	example	in	which	veridical	perception	minimizes	expected	19	

fitness	payoffs.	We	conclude	that	the	FBT	Theorem	supports	the	"interface	theory	of	20	

perception,"	which	proposes	that	our	senses	have	evolved	to	hide	objective	reality	and	21	

guide	adaptive	behavior.		It	also	supports	the	assertion	of	some	proponents	of	embodied	22	
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cognition	that	“representing	the	animal-independent	world	is	not	what	action-oriented	23	

representations	are	supposed	to	do;	they	are	supposed	to	guide	action”	(Chemero,	2009).	24	
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1.	Introduction	30	

It	is	standard	in	the	perceptual	and	cognitive	sciences	to	assume	that	more	accurate	31	

perceptions	are	fitter	perceptions	and,	therefore,	that	natural	selection	drives	perception	to	32	

be	increasingly	veridical,	i.e.	to	reflect	the	objective	world	in	an	increasingly	accurate	33	

manner.	This	assumption	forms	the	justification	for	the	prevalent	view	that	human	34	

perception	is,	for	the	most	part,	veridical.		For	example,	in	his	classic	book	Vision,	Marr	35	

(1982)	argued	that:	36	

“We	...	very	definitely	do	compute	explicit	properties	of	the	real	visible	surfaces	out	37	

there,	and	one	interesting	aspect	of	the	evolution	of	visual	systems	is	the	gradual	38	

movement	toward	the	difficult	task	of	representing	progressively	more	objective	39	

aspects	of	the	visual	world”.	(p.	340)	40	

Similarly,	in	his	book	Vision	Science,	Palmer	(1999)	states	that:	41	

“Evolutionarily	speaking,	visual	perception	is	useful	only	if	it	is	reasonably	42	

accurate	...	Indeed,	vision	is	useful	precisely	because	it	is	so	accurate.	By	and	large,	43	

what	you	see	is	what	you	get.	When	this	is	true,	we	have	what	is	called	veridical	44	



perception	...	perception	that	is	consistent	with	the	actual	state	of	affairs	in	the	45	

environment.	This	is	almost	always	the	case	with	vision.”		46	

In	discussing	perception	within	an	evolutionary	context,	Geisler	and	Diehl	(2003)	similarly	47	

assume	that:	48	

	“In	general,	(perceptual)	estimates	that	are	nearer	the	truth	have	greater	utility	49	

than	those	that	are	wide	off	the	mark.”	50	

In	their	more	recent	book	on	human	and	machine	vision,	Pizlo	et	al.	(2014)	go	so	far	as	to	51	

say	that:	52	

“…veridicality	is	an	essential	characteristic	of	perception	and	cognition.	It	is	53	

absolutely	essential.	Perception	and	cognition	without	veridicality	would	be	like	54	

physics	without	the	conservation	laws.”	(p.	227,	emphasis	theirs.)	55	

If	human	perception	is	in	fact	veridical,	it	follows	that	the	objective	world	shares	the	56	

attributes	of	our	perceptual	experience.	Our	perceived	world	is	three-dimensional,	and	is	57	

inhabited	by	objects	of	various	shapes,	colors,	and	motions.	Perceptual	and	cognitive	58	

scientists	thus	typically	assume	that	the	objective	world	is	so	inhabited.		In	other	words,	59	

they	assume	that	the	vocabulary	of	our	perceptual	representations	is	the	correct	vocabulary	60	

for	describing	the	objective	world	and,	moreover,	that	the	specific	attributes	we	perceive	61	

typically	reflect	the	actual	attributes	of	the	objective	world.	These	assumptions	are	62	

embodied	within	the	standard	Bayesian	framework	for	visual	perception,	which	we	63	

consider	in	the	next	section.	64	

Some	proponents	of	embodied	cognition	reject	the	claim	that	perception	is	normally	65	

veridical.	For	instance,	Chemero	(2009)	argues	that	“…	perceptual	systems	evolved	to	guide	66	

behavior.	Neither	humans	nor	beetles	have	action-oriented	representations	that	represent	67	



the	animal-independent	world	exactly	correctly.	Indeed,	representing	the	animal-68	

independent	world	is	not	what	action-oriented	representations	are	supposed	to	do;	they	69	

are	supposed	to	guide	action.	So	the	set	of	human	affordances,	that	is,	action-oriented	70	

representeds,	is	just	as	tightly	geared	to	human	needs	and	sensorimotor	capacities	as	those	71	

of	other	types	of	animal.	This	leaves	us	with	a	multiplicity	of	conflicting	sensorimotor	72	

systems,	each	of	which	is	appropriate	for	guiding	the	adaptive	behavior	of	animals	whose	73	

systems	they	are.”	The	FBT	Theorem,	which	we	present	below,	supports	Chemero’s	claim.	It	74	

is	supported,	in	turn,	by	specific	examples	of	non-veridical	perceptions,	such	as	those	75	

discussed	by	Loomis	(2004)	and	Koenderink	et.	Al.	(2010).	76	

	77	

2.	The	standard	Bayesian	framework	for	visual	perception	78	

The	standard	approach	to	visual	perception	treats	it	as	a	problem	of	inverse	optics:	The	79	

“objective	world”—taken	to	be	3D	scenes	consisting	of	objects,	surfaces,	and	light	sources—80	

projects	2D	images	onto	the	retinas.	Given	a	retinal	image,	the	visual	system’s	goal	is	to	infer	81	

the	3D	scene	that	is	most	likely	to	have	projected	it	(e.g.	Adelson	&	Pentland,	1996;	Feldman,	82	

2013;	Knill	&	Richards,	1996;	Mamassian,	Landy,	&	Maloney,	2002;	Shepard,	1994;	Yuille	&	83	

Bülthoff,	1996).	Since	a	2D	image	does	not	uniquely	specify	a	3D	scene,	the	only	way	to	infer	84	

a	3D	scene	is	to	bring	additional	assumptions	or	“biases”	to	bear	on	the	problem—based	on	85	

prior	experience	(whether	phylogenetic	or	ontogenetic).	For	example,	in	inferring	3D	shape	86	

from	image	shading,	the	visual	system	appears	to	make	the	assumption	that	the	light	source	87	

is	more	likely	to	be	overhead	(e.g.	Kleffner	&	Ramachandran,	1992).	Similarly,	in	inferring	88	

3D	shape	from	2D	contours,	it	appears	to	use	the	assumption	that	3D	objects	are	maximally	89	

compact	and	symmetric	(e.g.	Li	et	al.,	2013).	90	



Formally,	given	an	image	𝑥",	the	visual	system	aims	to	find	the	“best”	(generally	taken	to	91	

mean	“most	probable”)	scene	interpretation	in	the	world.	In	probabilistic	terms,	it	must	92	

compare	the	posterior	probability	ℙ 𝑤 𝑥" 	of	various	scene	interpretations	𝑤,	given	the	93	

image	𝑥".	By	Bayes’	Rule,	the	posterior	probability	is	given	by:	94	

	 	ℙ 𝑤 𝑥" = ℙ 𝑥" 𝑤 ∙ℙ(()
ℙ(*+)

		95	

Since	the	denominator	term	ℙ(𝑥")	does	not	depend	on	𝑤,	it	plays	no	essential	role	in	96	

comparing	the	relative	posterior	probabilities	of	different	scenes	interpretations	w.	The	97	

posterior	probability	is	thus	proportional	to	the	product	of	two	terms:	The	first	is	the	98	

likelihood	ℙ 𝑥" 𝑤 	of	any	candidate	scene	interpretation	w;	this	is	the	probability	that	the	99	

candidate	scene	w	could	have	projected	(or	generated)	the	given	image	𝑥".	Because	any	2D	100	

image	is	typically	consistent	with	many	different	3D	scenes,	the	likelihood	will	often	be	101	

equally	high	for	a	number	of	candidate	scenes.	The	second	term	is	the	prior	probability	102	

ℙ(𝑤)	of	a	scene	interpretation;	this	is	the	probability	that	the	system	implicitly	assigns	to	103	

different	candidate	scenes,	even	prior	to	observing	any	image.	For	example,	the	visual	104	

system	may	implicitly	assign	higher	prior	probabilities	to	scenes	where	the	light	source	is	105	

overhead,	or	to	scenes	that	contain	compact	objects	with	certain	symmetries.	Thus,	when	106	

multiple	scenes	have	equally	high	likelihoods	(i.e.	are	equally	consistent	with	the	image),	107	

the	prior	can	serve	as	a	disambiguating	factor.	108	

Application	of	Bayes’	Rule	yields	a	probability	distribution	on	the	space	of	candidate	109	

scenes—the	posterior	distribution.	A	standard	way	to	pick	a	single	“best”	interpretation	110	

from	this	distribution	is	to	choose	the	world	scene	that	has	the	maximal	posterior	111	

probability—one	that,	statistically	speaking,	has	the	highest	probability	of	being	the	112	

“correct”	one,	given	the	image	𝑥".	This	is	the	maximum-a-posteriori	or	MAP	estimate.	More	113	

generally,	the	strategy	one	adopts	for	picking	the	“best”	answer	from	the	posterior	114	



distribution	depends	on	the	choice	of	a	loss	(or	gain)	function,	which	describes	the	115	

consequences	of	making	“errors,”	i.e.	picking	an	interpretation	that	deviates	from	the	“true”	116	

(but	unknown)	world	state	by	varying	extents.	The	MAP	strategy	follows	under	a	Dirac-117	

delta	loss	function—no	loss	for	the	“correct”	answer	(or	“nearly	correct”	within	some	118	

tolerance),	and	equal	loss	for	everything	else.	Other	loss	functions	(such	as	the	squared-119	

error	loss)	yield	other	choice	strategies	(such	as	the	mean	of	the	posterior	distribution;	see	120	

e.g.	Mamassian	et	al.,	2002).	But	we	focus	on	the	MAP	estimate	here	because,	in	a	well-121	

defined	sense,	it	yields	the	highest	probability	of	picking	the	“true”	scene	interpretation	122	

within	this	framework.	123	

This	standard	Bayesian	approach	embodies	the	“veridicality”	or	“truth”	approach	to	visual	124	

perception.	By	this	we	do	not	mean,	of	course,	that	the	Bayesian	observer	always	gets	the	125	

“correct”	interpretation.	Given	the	inductive	nature	of	the	problem,	that	would	be	a	126	

mathematical	impossibility.	It	is	nevertheless	true	that:		127	

(i) The	space	of	hypotheses	or	interpretations	from	which	the	Bayesian	observer	128	

chooses	is	assumed	to	correspond	to	the	objective	world.	That	is,	the	vocabulary	129	

of	perceptual	experiences	is	assumed	to	the	right	vocabulary	for	describing	130	

objective	reality.		131	

(ii) Given	this	setup,	the	MAP	strategy	maximizes	(statistically	speaking)	the	132	

probability	of	picking	the	“true”	world	state.	133	

		134	

3.	Evolution	and	Fitness	135	

The	Bayesian	framework,	summarized	above,	focuses	on	estimating	the	world	state	that	has	136	

the	highest	probability	of	being	the	“true”	one,	given	some	sensory	inputs.	This	estimation	137	



involves	no	notion	of	evolutionary	fitness.2		In	order	to	bring	evolution	and	fitness	into	the	138	

picture,	we	think	of	organisms	as	gathering	fitness	points	as	they	interact	with	their	139	

environment.	Thus	each	element	w	of	the	world	W	has	associated	with	it	a	fitness	value.	In	140	

general,	however,	the	fitness	value	depends	not	only	on	the	world,	but	also	on	the	organism	141	

o	in	question	(e.g.,	lion	vs.	rabbit),	its	state	s	(e.g.,	hungry	vs.	satiated),	and	the	action	class	a	142	

in	question	(e.g.,	feeding	vs.	mating).	Given	such	a	fitness	landscape,	natural	selection	favors	143	

perceptions	and	choices	that	yield	more	fitness	points.	144	

We	may	thus	define	a	global	fitness	function	as	a	(non-negative)	real-valued	function	f	(w,	o,	145	

s,	a)	of	these	four	variables.	However,	once	we	fix	an	organism,	its	state	and	a	given	action	146	

class,	i.e.,	once	we	fix	o,	s	and	a,	a	specific	fitness	function	is	simply	a	(non-negative)	real-147	

valued	function	𝑓:	𝑊 → 	 [0,∞)	defined	on	the	world	W.			148	

In	order	to	compare	the	fitness	of	different	perceptual	and/or	choice	strategies,	one	pits	149	

them	against	one	another	in	an	evolutionary	resource	game	(for	simulations	exemplifying	150	

the	results	of	this	paper,	see,	e.g.,	Mark,	Marion,	&	Hoffman,	2010;	Marion,	2013;	and	Mark,	151	

2013).	In	a	typical	game,	two	organisms	employing	different	strategies	compete	for	152	

available	territories,	each	with	a	certain	number	of	resources.	The	first	player	observes	the	153	

available	territories,	chooses	what	it	estimates	to	be	its	optimal	one,	and	receives	the	fitness	154	

payoff	for	that	territory.	The	second	player	then	chooses	its	optimal	territory	from	the	155	

remaining	available	ones.	The	two	organisms	thus	take	turn	in	picking	territories,	seeking	156	

to	maximize	their	fitness	payoffs.		157	

In	this	case,	the	quantity	of	resources	in	any	given	territory	is	the	relevant	world	attribute.	158	

That	is,	W	is	here	interpreted	as	depicting	different	quantities	of	some	relevant	resource.	159	
																																																								
2	As	noted	above,	Bayesian	approaches	often	involve	a	loss	(or	gain)	function.	However,	this	is	quite	
distinct	from	a	fitness	function,	as	defined	below.	Specifically,	loss	functions	are	functions	of	two	
variables	l(x,	x*),	where	x*	is	the	“true”	world	state,	and	x	is	a	hypothetical	estimate	arrived	at	by	the	
observer.	A	fitness	function	is,	however,	not	a	function	of	the	observer’s	estimate	x.	



We	can	then	consider	a	perceptual	map	P :W → X ,	where	X	is	the	set	of	possible	sensory	160	

states,	together	with	an	ordering	on	it:	P	picks	out	the	“best”	element	of	X	in	a	sense	relevant	161	

to	the	perceptual	strategy.	One	may,	for	instance,	imagine	a	simple	organism	whose	162	

perceptual	system	has	only	a	small	number	of	distinct	sensory	states.	Its	perceptual	map	163	

would	then	be	some	way	of	mapping	various	quantities	of	the	resource	to	the	small	set	of	164	

available	sensory	states.	As	an	example,	Figure	1	shows	two	possible	perceptual	mappings,	165	

i.e.	two	ways	of	mapping	the	quantity	of	resources	(here,	ranging	from	0	through	100)	to	166	

four	available	sensory	categories	(here	depicted	here	by	the	four	colors	R,	Y,	G,	B).	167	

	168	

Figure	1.		A	simple	example	showing	two	different	perceptual	mappings	P :W → X 	from	169	

world	states,	W	=	[1,	100]	to	sensory	states	X	=	{R,	Y,	G,	B}.	170	

In	addition,	there	is	a	fitness	function	on	W,	𝑓:	𝑊 → 	 [0,∞),	which	assigns	a	non-negative	171	

fitness	value	to	each	resource	quantity.		One	can	imagine	fitness	functions	that	are	172	

monotonic	(e.g.	fitness	may	increase	linearly	or	logarithmically	with	the	number	of	173	

resources),	or	highly	non-monotonic	(e.g.	fitness	may	peak	for	a	certain	number	of	174	



resources,	and	decrease	in	either	direction).	Non-monotonic	fitness	functions	(such	as	the	175	

one	shown	in	Figure	2)	are	in	fact	quite	common:	too	little	water	and	one	dies	of	thirst,	too	176	

much	water	and	one	drowns.	Similar	arguments	apply	to	the	level	of	salt,	or	to	the	177	

proportion	of	oxygen	and	indeed	any	number	of	other	resources.		Indeed,	given	the	178	

ubiquitous	need	for	organisms	to	main	homoeostasis,	one	expects	non-monotonic	fitness	179	

functions	to	be	prevalent.	(Moreover,	from	a	purely	mathematical	point	of	view,	the	set	of	180	

monotonic	fitness	functions	is	an	extremely	small	subset	of	the	set	of	all	functions	on	a	181	

given	domain.	That	is	to	say,	there	are	“many	more”	non-monotonic	functions	than	182	

monotonic	ones;	hence	a	random	sampling	of	fitness	functions	is	much	more	likely	to	yield	a	183	

non-monotonic	one.)	184	

	185	

Figure	2.		An	example	of	a	non-monotonic	fitness	function	𝑓:𝑊 → [0,∞).	Fitness	is	maximal	186	

for	an	intermediate	value	of	the	resource	quantity	and	decreases	in	either	direction.	Given	187	

the	ubiquitous	need	for	organisms	to	main	homoeostasis,	one	expects	that	such	fitness	188	

functions	are	quite	common.		189	

	190	

4.	Comparing	perceptual	strategies:	“Truth”	vs.	“Fitness-only”	191	



In	the	context	of	these	evolutionary	games,	in	which	perceptual	strategies	compete	for	192	

resource	acquisition,	we	take	as	fixed	and	known	to	the	organism:	the	specific	fitness	193	

function,	its	prior	(in	a	particular	state	and	for	a	particular	action	class)	and	its	perceptual	194	

map	(see	Figure	3).	On	any	given	trial,	the	organism	observes	a	number	of	available	195	

territories	through	its	sensory	states,	say	x1,	x2,…,	xn.	Its	goal	is	to	pick	one	of	these	196	

territories,	seeking	to	maximize	its	fitness	payoff.	One	can	now	consider	two	possible	197	

resource	strategies:	198	

The	“Truth”	strategy:	For	each	of	the	n	sensory	states,	the	organism	estimates	the	world	199	

state	or	territory	-	the	Bayesian	MAP	estimate	-	that	has	the	highest	probability	of	being	the	200	

“true”	one,	given	that	sensory	state.	It	then	compares	the	fitness	values	for	those	estimated	201	

world	states.	Finally,	it	makes	its	choice	of	territory	based	on	the	sensory	state	xi	that	yields	202	

the	highest	fitness.	Its	choice	is	thus	mediated	through	MAP	estimate	of	the	world	state.	203	

The	“Fitness-only”	strategy:	In	this	strategy,	the	organism	makes	no	attempt	to	estimate	204	

the	“true”	world	state	corresponding	to	each	sensory	state.	Rather	it	directly	computes	the	205	

expected	fitness	payoff	that	would	result	from	each	possible	choice	of	xi.	For	a	given	sensory	206	

state	xi,	there	is	a	posterior	probability	distribution	(given,	as	with	the	Truth	strategy,	by	207	

Bayes’	formula)	on	the	possible	world	states,	as	well	as	a	fitness	value	corresponding	to	208	

each	world	state.	The	organism	weights	these	fitness	values	by	the	posterior	probability	209	

distribution,	in	order	to	compute	the	expected	fitness	that	would	result	from	the	choice	xi.	210	

And	it	picks	the	one	with	the	highest	expected	fitness.	211	



	212	

Figure	3.		The	framework	within	which	we	define	the	two	resource	strategies.	We	assume	a	213	

fixed	perceptual	map	P :W → X 	as	well	as	a	fixed	fitness	function	𝑓:𝑊 → [0,∞).	Given	a	214	

choice	of	available	territories	sensed	through	the	sensory	states,	say	x1,	x2,…,	xn,	the	215	

organism’s	goal	is	to	pick	one	of	these,	seeking	to	maximize	its	fitness	payoff.	216	

	217	

5.	Theorems	from	Evolutionary	Game	Theory		218	

In	an	evolutionary	game	between	 the	 two	strategies,	 say	A	 and	B,	the	payoff	matrix	 is	 as	219	

follows:		220	

𝑎𝑔𝑎𝑖𝑛𝑠𝑡	𝐴 𝑎𝑔𝑎𝑖𝑛𝑠𝑡	𝐵
𝐴	𝑝𝑙𝑎𝑦𝑠 𝑎 𝑏
𝐵	𝑝𝑙𝑎𝑦𝑠 𝑐 𝑑

	221	

Here	a,	b,	c,	 and	d	 denote	 the	various	payoffs	 to	 the	 row	player	when	playing	against	 the	222	

column	 player.	 E.g.,	 b	 is	 the	 payoff	 to	 A	when	 playing	 B.	We	 will	 refer	 to	 three	 main	223	

theorems	from	evolutionary	game	theory	relevant	to	our	analysis,	as	follows.	224	

We	 first	 consider	 games	 with	 infinite	 populations.	 These	 are	 investigated	 by	means	 of	 a	225	

deterministic	 differential	 equation,	 called	 the	 replicator	 equation,	 where	 time	 is	 the	226	

independent	variable	 and	 the	 relative	population	 sizes	𝑥C, 𝑥D	are	 the	dependent	variables,	227	



with	𝑥C + 𝑥D = 1	(Taylor	and	Jonker,	1978,	Hofbauer	and	Sigmund,	1990,	Nowak	2006).	In	228	

this	context,	there	are	four	generic	behaviors	in	the	long	run:		229	

Theorem	1.	 (Nowak	 2006)	 In	a	game	with	an	 infinite	population	of	 two	types,	A	and	B,	of	230	

players,	either		231	

(i) A	dominates	 B	 (in	 the	sense	 that	a	non-zero	proportion	of	A	players	will	eventually	232	

take	 over	 the	 whole	 population),	 if	𝑎 ≥ 𝑐 	and	 b	≥ 𝑑 	(with	 at	 least	 one	 of	 the	233	

inequalities	being	strict);	234	

(ii) B	dominates	A,	if	𝑎 ≤ 𝑐	and	b	≤ 𝑑	(with	at	least	one	of	the	inequalities	being	strict);	235	

(iii) 	A	and	B	coexist,	if	𝑎 ≤ 𝑐	and	b	≥ 𝑑	(with	at	least	one	of	the	inequalities	being	strict),	236	

at	a	stable	equilibrium	given	by	𝑥C∗ =
JKL

JMNKOKL
	(and	𝑥D∗ = 1 − 𝑥C∗);	237	

(iv) The	system	is	bistable,	if	𝑎 ≥ 𝑐	and	b	≤ 𝑑	(with	at	least	one	of	the	inequalities	being	238	

strict)		and	will	tend	towards	either	all	A	or	all	B	from	an	unstable	equilibrium	at	the	239	

same	value	of		𝑥C∗ 	as	above.	240	

A	 fifth,	non-generic	possibility	 is	 that	𝑎 = 𝑐	and	b= 𝑑,	 in	which	case	we	have	 that	A	and	B	241	

are	neutral	variants	of	one	another:	any	mixture	of	them	is	stable.		242	

Games	 with	 a	 finite	 population	 size	 N	 can	 be	 analyzed	 via	 a	 stochastic,	 as	 against	243	

deterministic,	 approach.	 The	 dynamics	 are	 described	 by	 a	 birth-death	 process,	 called	 the	244	

Moran	process	(Moran	1958).	The	results	are	more	nuanced	than	in	the	infinite	population	245	

sized	 case:	 there	 are	 now	 eight	 possible	 equilibrium	 behaviors,	 and	 they	 are	 population	246	

dependent,	not	just	payoff	dependent.		247	

Let	𝜌CD 	denote	 the	 fixation	 probability	 of	 a	 single	 A	 individual	 in	 a	 population	 of	 N-1	 B	248	

individuals	 replacing	 (i.e.,	 taking	 over	 completely)	 that	 population.	 Similarly,	 let	 Let	𝜌DC	249	

denote	the	fixation	probability	of	a	single	B	individual	in	a	population	of	N-1	of	A	individuals	250	



replacing	(i.e.,	taking	over	completely)	that	population.	In	the	absence	of	any	selection,	we	251	

have	the	situation	of	neutral	drift,	where	the	probability	of	either	of	 these	events	 is	 just	R
S
.		252	

We	say	that	selection	favors	A	replacing	B	if	𝜌CD >
R
S
	and	that	selection	favors	B	replacing	A	if	253	

𝜌DC >
R
S
.		254	

By	 analyzing	 the	 probabilities	 of	 a	 single	 individual	 of	 each	 type	 interacting	 with	 an	255	

individual	of	either	type,	or	of	dying	off,	we	can	use	the	payoff	matrix	above	to	compute	the	256	

fitness	𝐹V ,	when	 there	 are	 i	 entities	 of	 type	A,	 and	 the	 fitness	𝐺V 	of	 (the	N-i	 individuals)	 of	257	

type	 B.	 If	 we	 set	ℎV = 𝐹V − 𝐺V 	(𝑖 = 1, . . . , 𝑁),	 we	 can	 see	 that	ℎR > 0	implies	 that	 selection	258	

favors	A	invading	B,	while	ℎSKR > 0	implies	that	selection	favors	B	invading	A.	There	are	now	259	

sixteen	 possibilities,	 depending	 upon	 whether	 selection	 favors	 A	 replacing	 B	 or	 not;	 B	260	

replacing	 A	or	 not;	 whether	 selection	 favors	 A	 invading	 B	or	 not;	 and	 whether	 selection	261	

favors	B	invading	A	or	not.	Of	these,	eight	are	ruled	out	by	a	theorem	of	Taylor,	Fudenberg,	262	

Sasaki	and	Nowak	(2004).	A	full	description	is	provided	in	that	paper,	along	with	a	number	263	

of	 theorems	 detailing	 the	 possibilities	 in	 terms	 of	 the	 payoff	 values	 and	 population	 size.	264	

Their	Theorem	6,	 interpreted	below	as	our	Theorem	2,	 is	most	relevant	to	our	analysis	of	265	

evolutionary	 resource	 games:	 it	 gives	 conditions	 under	which	 selection	 is	 independent	 of	266	

population	 size	 and	 is	 reproduced	 below.	 Interestingly,	 for	 finite	 populations	 the	267	

relationship	between	payoffs	b	and	c	becomes	relevant:	268	

Theorem	2.	 	 In	a	game	with	a	finite	population	of	two	types	of	players,	A	and	B,	if		𝑏 > 𝑐, 𝑎 >269	

𝑐	and	𝑏 > 𝑑,	we	have	for	all	N,	ℎV > 0	∀𝑖	and	𝜌CD >
R
S
> 𝜌DC:	selection	favors	A.	270	

Finally,	we	also	consider,	within	large	finite	populations,	the	limit	of	weak	selection.	In	order	271	

to	model	the	strength	of	selection,	a	new	parameter	w	is	introduced.	This	parameter,	lying	272	

between	0	and	1,	is	a	measure	of	the	strength	of	selection:	we	write	the	fitness	of	A	now	as	273	



𝑓V = 1 − 𝑤 + 𝑤𝐹V 	and	 the	 fitness	 of	 B	 now	 as	𝑔V = 1 − 𝑤 + 𝑤𝐺V .	 When	𝑤 = 0,	 there	 is	 no	274	

selection:	the	fitnesses	are	equal	and	we	have	neutral	drift.	When	𝑤 = 1,	we	have	selection	275	

at	full	strength.	An	analysis	of	the	dynamics	of	the	Moran	process	under	weak	selection	(i.e.,	276	

in	the	limit	as	𝑤 → 0),	reveals	(following	Nowak	2006,	equation	7.11)	that:	277	

Theorem	3.	In	a	game	with	a	finite	population	of	two	types	of	players,	A	and	B,	and	with	weak	278	

selection,	 𝑎 − 𝑐 + 2 𝑏 − 𝑑 > ] OKN K(JKL)
S

	implies	 that	𝜌CD >
R
S
.	 Thus,	 if	𝑎 > 𝑐 	and	𝑏 > 𝑑 ,	279	

for	large	enough	N,	selection	favors	A.3	280	

	281	

6.	Evolutionary	Resource	Games	282	

	For	our	situation	of	two	resource	strategies,	we	may	define	the	payoff	matrix	as	follows:	283	

a:	to	Fitness-Only	when	playing	against	

Fitness-Only	

b:	to	Fitness-Only	when	playing	against	

Truth	

c:	to	Truth	when	playing	against	Fitness-Only	 d:	to	Truth	when	playing	against	Truth	

	284	

In	 a	 game	 with	 a	 very	 large	 (effectively	 infinite)	 number	 of	 players,	 the	 Fitness-Only	285	

resource	 strategy	 dominates	 the	 Truth	 strategy	 (in	 the	 sense	 that	 Fitness-Only	 will	286	

eventually	 drive	Truth	to	 extinction)	 if	 the	 payoffs	 to	Fitness-Only	 as	 first	 player	 always	287	

exceed	those	of	Truth	as	first	player,	regardless	of	who	the	second	player	is,	i.e.	if	 	and	288	

	and	at	least	one	of	these	is	a	strict	inequality.	If	neither	of	these	inequalities	is	strict,	289	

then	at	the	least	Fitness-Only	will	never	be	dominated	by	Truth.		290	

																																																								
3	The	value	of	N	at	which	this	happens	depends	upon	the	payoff	matrix,	but	can	be	
arbitrarily	large	over	the	set	of	all	payoff	matrices	satisfying	𝑎 > 𝑐	and	𝑏 > 𝑑.	
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Our	main	claim	in	this	paper	is	that	the	Truth	strategy—attempting	to	infer	to	the	“true”	291	

state	of	the	world	that	is	most	likely	correspond	to	a	given	sensory	state—confers	no	292	

evolutionary	advantage	to	an	organism.	In	the	next	section,	we	state	and	prove	a	theorem—293	

the	“Fitness	Beats	Truth"	theorem—which	states	that	Fitness-Only	will	never	be	dominated	294	

by	Truth.	Indeed,	the	Truth	strategy	will	generally	result	in	a	lower	expected-fitness	payoff	295	

than	the	Fitness-Only	strategy,	and	is	thus	likely	to	go	extinct	in	any	evolutionary	296	

competition	against	the	Fitness-Only	strategy.	(The	statement	of	the	FBT	theorem	297	

articulates	the	precise	way	in	which	this	is	true.)	We	begin,	first,	with	a	numerical	example	298	

that	exemplifies	this.	299	

6.1	Numerical	Example	of	Fitness	Beating	Truth		300	

We	give	a	simple	example	to	pave	the	way	for	the	ideas	to	follow.	Suppose	there	are	three	301	

states	 of	 the	 world,	𝑊 = {𝑤R, 𝑤], 𝑤_}	and	 two	 possible	 sensory	 stimulations,	𝑋 = {𝑥R, 𝑥]}.	302	

Each	 world	 state	 can	 give	 rise	 to	 a	 sensory	 stimulation	 according	 to	 the	 information	303	

contained	 in	 Table	 1.	 The	 first	 two	 columns	 give	 the	 likelihood	 values,	ℙ 𝑥 𝑤 ,	for	 each	304	

sensory	stimulation,	given	a	particular	world	state;	for	instance,	ℙ(	𝑥R|	𝑤]) = 3/4.	The	third	305	

column	 gives	 the	 prior	 probabilities	 of	 the	 world	 states.	 The	 fourth	 column	 shows	 the	306	

fitness	associated	with	each	world	state.	 If	we	 think	of	 the	world	states	as	 three	different	307	

kinds	of	food	that	an	organism	might	eat,	then	these	values	correspond	to	the	fitness	benefit	308	

an	organism	would	get	by	eating	one	of	the	foods.	With	this	analogy,	𝑤R	corresponds	to	an	309	

extremely	 healthful	 food,	while	𝑤]	and	𝑤_	correspond	 to	moderately	 healthful	 foods,	with	310	

𝑤]	being	more	healthful	than	𝑤_	(see	Table	1).	This	setup	is	the	backdrop	for	a	simple	game	311	

where	 observers	 are	 presented	 with	 two	 sensory	 stimulations	 and	 forced	 to	 choose	312	

between	them.	313	



	

Likelihood:	𝒙𝟏	given	𝒘𝒋	

ℙ(𝑥R 𝑤j 	

Likelihood:	𝒙𝟐	given	𝒘𝒋	

ℙ(𝑥] 𝑤j 	

Prior	

ℙ 𝑤j 	

Fitness	

𝑓 𝑤j 	

𝑤R	 1/4	 3/4	 1/7	 20	

𝑤]	 3/4	 1/4	 3/7	 4	

𝑤_	 1/4	 3/4	 3/7	 3	

Table	1:	Likelihood	functions,	priors	and	fitness	for	our	simple	example	where	the	Truth	314	

observer	minimizes	expected	fitness,	while	Fitness-only	observer	maximizes	it.	315	

Using	 Bayes’	 theorem	 we	 have	 calculated	 (see	 Appendix)	 that	 for	𝑥R	the	 Truth	 (i.e.	 the	316	

maximum-a-posteriori)	 estimate	 is	𝑤],	 and	 that	 for	𝑥]	this	estimate	 is	𝑤_.	Thus,	 if	 a	Truth	317	

observer	 is	offered	a	choice	between	two	foods	to	eat,	one	that	gives	 it	stimulation	𝑥R	and	318	

one	that	gives	it	stimulation	𝑥],	it	will	perceive	that	it	has	been	offered	a	choice	between	the	319	

foods	𝑤]	and	𝑤_.	 Assuming	 that	 it	 has	 been	 shaped	 by	 natural	 selection	 to	 choose,	 when	320	

possible,	 the	 food	with	 greater	 fitness,	 it	will	 always	prefer	𝑤].	 So,	when	offered	 a	 choice	321	

between	𝑥R	and	𝑥],	the	Truth	observer	will	always	choose	𝑥R,	with	an	expected	utility	of	5.		322	

Now	suppose	a	Fitness-Only	observer	is	given	the	same	choice.	The	Fitness-Only	observer	323	

is	not	at	all	concerned	with	which	“veridical”	food	these	signals	most	likely	correspond	to,	324	

but	has	been	shaped	by	natural	selection	to	only	care	about	which	stimulus	yields	a	higher	325	

expected	 fitness.	We	 have	 calculated	 (see	 Appendix)	 that	 the	 expected	 fitness	 of	 sensory	326	

stimulation	𝑥R	is	 5	 and	 the	 expected	 utility	 of	 stimulation	𝑥]	is	 6.6.	 Thus,	 when	 offered	 a	327	

choice	 between	𝑥R	and	𝑥],	 the	 Fitness-Only	 observer	 will	 always,	 maximizing	 expected	328	

fitness,	choose	𝑥].		329	



The	implications	of	these	results	are	clear.	Consider	a	population	of	Truth	observers	330	

competing	for	resources	against	a	population	of	Fitness-Only	observers,	both	occupying	the	331	

niche	described	by	Table	1.	Since,	in	this	case,	the	Truth	observer’s	choice	minimizes	332	

expected	utility	and	the	Fitness-Only	observer’s	choice	maximizes	expected	utility,	the	333	

Fitness-Only	population	will	be	expected	to	drive	the	population	of	Truth	observers	to	334	

extinction.	Seeing	truth	can	minimize	fitness;	thereby	leading	to	extinction.	This	conclusion	335	

is	apart	from	considerations	of	the	extra	energy	required	to	keep	track	of	truth	(see	Mark,	336	

Marion	and	Hoffman	2010	for	discussion	on	energy	resources).	337	

	338	

7.	Mathematical	Background	for	the	Main	Theorem		339	

We	assume	that	there	is	a	fixed	preliminary	map,	p,	which	associates	to	each	world	state	340	

𝑤 ∈ 𝑊a	sensory	state	𝑥 ∈ 𝑋.	And	we	assume	a	fitness	map	on	W	(recall	Figure	3).	This	341	

places	the	Truth	strategy	and	the	Fitness-only	strategy	on	a	common	footing	where	they	342	

can	be	set	in	direct	competition	against	each	other	within	the	context	of	an	evolutionary	343	

resource	game.		344	

We	begin	with	some	mathematical	definitions	and	assumptions	regarding	these	spaces	and	345	

maps.	346	

	 It	will	suffice	for	a	basic	understanding	of	the	development	in	what	follows,	to	think	347	

of	W	as	 a	 finite	 set	 (as	 in	 the	 example	 in	 6.1).4	In	 general,	 we	 take	 the	world	W	 to	 be	 a	348	

compact	regular	Borel	space	whose	collection	of	measurable	events	is	a	𝜎-algebra,	denoted	349	

ℬ.5	We	assume	 that	< 𝑊,ℬ >	comes	equipped	with	an	a	priori	probability	measure	𝜇	on	350	

																																																								
4	in	which	case	all	the	integral	signs	below	can	be	replaced	by	summations.	
5	An	example	is	a	closed	rectangle	in	some	k-dimensional	Euclidean	space,	such	as	the	unit	interval	[0,	1]	in	one	
dimension,	or	the	unit	square	in	two.	



ℬ.	We	will	consider	only	those	probability	measures	𝜇	that	are	absolutely	continuous	with	351	

respect	 to	 the	 Borel	 measure	 on	ℬ.	 That	 is,	 if	 we	 write	d𝑤	for	 the	 uniform,	 or	 Borel,	352	

probability	 measure	 on	 W,	 then	 the	 a	 priori	 measure	 satisfies	𝜇 𝑑𝑤 = 𝑔 𝑤 	d𝑤.	Here	353	

𝑔:𝑊 → ℝM	is	 some	 non-negative	 measurable	 function,	 called	 the	 density	 of	𝜇,	satisfying	354	

	 𝑔(𝑤)	d𝑤 = 1.	We	will	take	any	such	density	to	be	continuous,	so	that	 it	always	achieves	355	

its	maximum	on	the	compact	set	W.	This	constitutes	the	structure	of	the	world:	a	structure	356	

that	applies	to	most	biological	and	perceptual	situations.	357	

	 We	 assume	 that	 a	 given	 species	 interacts	 with	 its	 world,	 employing	 a	 perceptual	358	

mapping	 that	 “observes”	 the	world	via	 a	measurable	map	𝑝:	𝑊 → 𝑋.	We	 refer	 to	 this	 as	 a	359	

pure	perceptual	map	 because	 it	 involves	 no	 dispersion:	 each	world	 state	 can	 yield	 only	 a	360	

single	sensory	state	x.	We	assume	that	the	set	of	perceptual	states	X	is	a	finite	set,	with	the	361	

standard	discrete	𝜎-algebra	𝒳,	i.e.,	its	power	set	(so	that	all	subsets	of	X	are	measurable).	In	362	

the	general	case,	the	perceptual	map	may	have	dispersion	(or	noise),	and	is	mathematically	363	

expressed	 as	 a	Markovian	 kernel	𝑝:𝑊×𝒳 → 0,1 .	That	 is,	 for	 every	 element	w	 in	W,	 the	364	

kernel	p	assigns	a	probability	distribution	on	X	(hence	it	assigns	a	probability	value	to	each	365	

measurable	subset	of	X).	Because	X	 is	 finite	and	all	of	 its	subsets	are	measurable,	here	the	366	

kernel	may	be	viewed	simply	as	assigning,	for	every	element	w	in	W,	a	probability	value	to	367	

each	element	of	X.	368	

7.1	General	Perceptual	Mappings	and	Bayesian	Inference		369	

We	 use	 the	 letter	ℙ	to	 indicate	 any	 relevant	 probability.	 Bayesian	 inference	 consists	 in	 a	370	

computation	 of	 the	 conditional	 probability	 measure	ℙ(d𝑤	|	𝑥)	on	 the	 world,	 given	 a	371	

particular	 perception	𝑥	in	 X.	 The	 likelihood	 function	 is	 the	 probability	ℙ(𝑥	|	𝑤)	that	 a	372	

particular	 world	 state	𝑤	could	 have	 given	 rise	 to	 the	 observed	 sensory	 state	𝑥.	Then	 the	373	



conditional	probability	distribution	ℙ(𝑑𝑤	|	𝑥)	is	the	a	posterior	probability	distribution	in	a	374	

(partially)	continuous	version	of	Bayes	formula:	375	

ℙ(d𝑤	|	𝑥) =
ℙ(𝑥	|	𝑤)		ℙ d𝑤

ℙ 𝑥
.	376	

Since	𝜇,	the	prior	on	W,	has	a	density	𝑔	with	respect	to	the	Borel	measure	d𝑤,	we	can	recast	377	

this	formula	in	terms	of	𝑔:	indeed,	ℙ(d𝑤	|	𝑥)	also	has	a	conditional	density,	𝑔(𝑤	|	𝑥),	with	378	

respect	to	the	Borel	measure6	and	we	obtain	379	

𝑔(𝑤	|	𝑥) =
ℙ(𝑥	|	𝑤)		𝑔 𝑤
ℙ(𝑥	|	𝑤′)	𝑔 𝑤′

.	380	

We	 now	 define	 a	maximum	 a	 posteriori	 estimate	 for	𝑥	in	 X	 to	 be	 any	𝑤* 	at	 which	 this	381	

conditional	 density	 is	 maximized:	𝑔 𝑤*	 𝑥) =	max 	𝑔 𝑤	 𝑥 	|	𝑤 ∈ 𝑊}.		 At	 least	 one	 such	382	

maximum	will	exist,	since	𝑔	is	bounded	and	piecewise	continuous;	however,	there	could	be	383	

multiple	such	estimates	for	each	𝑥.	384	

For	a	given	sensory	state	𝑥,	 the	only	world	states	that	could	have	given	rise	to	 it	 lie	 in	the	385	

fiber	over	𝑥,	i.e.,	 the	set	𝑝KR 𝑥 ⊂ 𝑊.	So,	 for	a	given	𝑥,	the	mapping	𝑤 → ℙ(𝑥	|	𝑤)	takes	 the	386	

value	1	on	the	fiber,	and	is	zero	everywhere	else.	This	mapping	may	thus	be	viewed	as	the	387	

indicator	function	of	this	fiber.	We	denote	this	indicator	function	by	1wxy * 𝑤 .	388	

For	a	pure	mapping	the	conditional	density	is	just	389	

𝑔(𝑤	|	𝑥) =
𝑔 𝑤 ⋅ 1wxy * 𝑤

𝜇 𝑝KR 𝑥
,	390	

where	𝜇 𝑝KR 𝑥 	is	the	a	priori	measure	of	the	fiber.		391	

																																																								
6	That	is,	ℙ(d𝑤	|	𝑥) = 𝑔(𝑤 𝑥 d𝑤.	



In	 this	 special	 case	 of	 a	 pure	 mapping	 that	 has	 given	 rise	 to	 the	 perception	𝑥,	we	 can	392	

diagram	 the	 fiber	 over	x	on	 which	 this	 average	 fitness	 is	 computed.	This	 is	 the	 shaded	393	

region	in	figure	3	below.		394	

	395	

Figure	4.		The	expected	fitness	of	𝑥	is	the	average,	using	the	posterior	probability,	over	the	396	

fiber	𝑝KR 𝑥 .	397	

7.2	Expected	Fitness		398	

Given	a	fitness	function	𝑓:𝑊 → [0,∞)	that	assigns	a	non-negative	fitness	value	to	each	399	

world	state,	the	expected	fitness	of	a	perception	𝑥	is	400	

𝐹 𝑥 = 𝑓 𝑤 	ℙ(d𝑤	|	𝑥) 	= 𝑓 𝑤 𝑔(𝑤	|	𝑥)	d𝑤 .	401	

7.3	Two	Perceptual	Strategies.	402	

We	may	build	our	two	perceptual	strategies	𝑃}, 𝑃~ ,	called	“Truth”	and	“Fitness-Only”	403	

respectively,	as	compositions	of	a	“sensory”	map	𝑝:𝑊 → 𝑋	that	recognizes	territories	and	404	

!
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“ordering”	maps	𝑑}, 𝑑~: 𝑋 → 𝑋,	where	𝑃} = 𝑑} ∘ 𝑝		and	𝑃~ = 𝑑~ ∘ 𝑝.	That	is,	the	map	𝑑} 	re-405	

names	the	elements	of	X	by	re-ordering	them,	so	that	the	best	one,	in	terms	of	its	Bayesian	406	

MAP	estimate,	is	now	the	first,	𝑥R,	the	second	best	is	𝑥]	etc.	The	map	𝑑~ ,	on	the	other	hand,	407	

re-orders	the	elements	of	X	so	that	the	best	one,	in	terms	of	its	expected	fitness	estimate,	is	408	

𝑥R,	the	second	best	is	𝑥]	etc.	The	organism	picks	𝑥R	if	it	can,	𝑥]	otherwise.	409	

We	can	now	assert	our	main	theorem,	in	various	contexts	of	evolutionary	games:	with	410	

infinite	populations,	finite	populations	with	full	selection,	and	sufficiently	large	finite	411	

populations	with	weak	selection.	412	

	413	

8.	Results	414	

8.1	The	“Fitness	Beats	Truth”	Theorem		415	

The	following	theorem	applies	to	infinite	populations,	or	to	large	finite	populations	416	

including	those	with	weak	selection:	417	

Theorem	4:	Over	all	possible	fitness	functions	and	a	priori	measures,	the	probability	that	the	418	

Fitness-only	perceptual	strategy	strictly	dominates	the	Truth	strategy	is	at	least	( 𝑋 −419	

3)/( 𝑋 − 1),	where	 𝑋 	𝑖𝑠	𝑡ℎ𝑒	𝑠𝑖𝑧𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙	𝑠𝑝𝑎𝑐𝑒.	As	this	size	increases,	this	420	

probability	becomes	arbitrarily	close	to	1:	in	the	limit,	Fitness-only	will	generically	strictly	421	

dominate	Truth,	so	driving	the	latter	to	extinction.	422	

Proof:	For	any	given	𝑥,	the	Bayesian	MAP	estimate	is	a	world	point	𝑤* 	(it	is	the	𝑤*	such	that	423	

𝑔 𝑤*	 𝑥) =	max 	𝑔(𝑤|𝑥 	 	𝑤 ∈ 𝑊 ).	 This	 point	 has	 fitness	𝑓 𝑤* ;	let	𝑥� 	be	 that	𝑥	for	which	424	

the	corresponding	𝑓 𝑤* 	is	maximized.	Then	this	𝑥� 	is,	if	available,	is	chosen	by	Truth	and	425	

𝐹(𝑥�),	its	expected	fitness,	is	the	payoff	to	Truth.	426	



On	 the	 other	 hand,	 the	 fitness	 payoff	 to	 the	 Fitness-only	 strategy	 is,	 by	 definition	 the	427	

maximum	expected	fitness	𝐹(𝑥�)	over	all	fibers,	so	clearly,	𝐹(𝑥�) ≤ 𝐹(𝑥�).		428	

As	defined	 earlier,	 our	 evolutionary	 game	has	 as	 payoffs,	a:	to	Fitness-only	when	playing	429	

against	 Fitness-only;	 b:	 to	 Fitness-only	 when	 playing	 against	 Truth;	 c:	 to	 Truth	 when	430	

playing	against	Fitness-only;	d:	to	Truth	when	playing	against	Truth.	431	

We	need	to	estimate	the	probability	 that	 	and	 	We	assume	that	 if	both	strategies	432	

are	the	same,	then	each	has	an	even	chance	of	picking	its	best	territory	first.	Thus	if,	in	any	433	

given	play	 of	 the	 game,	 two	 competing	 strategies	 both	 take	 a	particular	 territory	 as	 their	434	

most	favored	one,	then	each	strategy	has	an	even	chance	of	picking	that	territory	and	then	435	

the	other	strategy	picks	its	next-best	choice	of	territory.	436	

If	 Fitness-only	 meets	 Fitness-only,	 then	 each	 has	 an	 even	 chance	 of	 choosing	 its	 best	437	

territory,	 say	𝑥�;	 the	second	 to	choose	 then	chooses	 its	 second	best	 territory,	 say	𝑥��.	 Since	438	

each	player	has	an	equal	chance	of	being	first,	we	have	439	

𝑎 = 𝐹 𝑥� + 𝐹 𝑥�� /2.	440	

If	Truth	meets	Fitness-only,	its	choice	will	be	𝑥� ,	as	long	as	this	value	differs	from	𝑥� .	In	this	441	

instance,	 we	 have	𝑎 > 𝑐.	 If,	 however,	𝑥� = 𝑥�,	half	 the	 time	Truth	 will	 choose	𝑥� 	and	 the	442	

other	half	𝑥�� , where	𝑥�� 	is	the	second	best	of	the	optimal	territories	for	𝑻𝒓𝒖𝒕𝒉	.	Hence		443	

𝑐 =
𝐹(𝑥�),											if	different	best	territories
𝐹(𝑥�) + 𝐹 𝑥��

2
,	if	same	best	territories

	444	

and	since	𝐹 𝑥� ≤ 𝐹 𝑥� 	and	𝐹(𝑥�� ) ≤ 𝐹 𝑥�� 	we	get	 	445	

What	happens	when	Fitness-only	meets	Truth?	If	Fitness-only	goes	first,	the	payoff	will	be	446	

𝑏 = 𝐹(𝑥�).	The	same	is	true	if	Truth	goes	first	and	the	two	best	territories	are	different.	If,	447	

!a ≥c !!b ≥d.

!!a ≥c.



however,	the	two	best	territories	are	the	same,	then	the	payoff	to	Fitness-only	is	its	second-448	

best	outcome:	449	

𝑏 =
𝐹(𝑥�),	if	different	best	territories
𝐹 𝑥�� ,							if	same	best	territories

	450	

Finally,	when	Truth	meets	Truth,	we	have	that	451	

𝑑 =
𝐹 𝑥� + 𝐹 𝑥��

2
.	452	

So	it	is	clear	that	𝑏 ≥ 𝑑,	as	long	as	the	two	best	territories	are	different.	If	they	are	the	same,	453	

this	 may	 or	 may	 not	 be	 true:	 it	 depends	 on	 the	 relative	 size	 of	 the	 average	 d	 and	𝐹 𝑥�� 	454	

(which,	in	this	instance,	also	lies	in	between	𝐹 𝑥�� 	and	𝐹(𝑥�) = 𝐹 𝑥� ).	455	

Now,	a	priori,	there	is	no	canonical	relation	between	the	functions	f	and	g,	both	of	which	can	456	

be	pretty	much	arbitrary	(in	fact,	f	need	not	even	be	continuous	anywhere,	and	could	have	457	

big	 jumps	 as	 well	 as	 bands	 of	 similar	 value	 separated	 from	 each	 other	 in	 W).	 Also,	458	

generically	 the	maximum	 for	each	strategy	will	be	unique	and	also	 the	expected	 fitnesses	459	

for	the	different	territories	will	all	be	distinct.		460	

Thus,	generically,	𝐹(𝑥�)	and	𝐹 𝑥�� 	will	be	different	from	and	indeed	strictly	less	than	𝐹(𝑥�)	461	

(and	 also	𝐹 𝑥�� < 𝐹 𝑥�� ).	 The	 only	 impediment	 to	 the	 domination	 of	 Fitness-Only	 can	462	

come	 from	the	situation	where	 the	best	 territories	 for	both	strategies	are	 the	same.	Let	X	463	

have	size	 𝑋 = 𝑛.	There	are	𝑛	ways	the	two	strategies	can	output	the	same	territory,	out	of	464	

the	𝑛! [2! 𝑛 − 2 !]	ways	of	pairing	territories.	Thus,	across	all	possibilities	for	 f	and	g,	 the	465	

probability	that	randomly	chosen	fitness	and	a	priori	measures	would	result	in	choosing	the	466	

same	territory	for	both	strategies,	i.e.,	that	𝐹 𝑥� = 𝐹(𝑥�),	will	happen	with	a	probability	of		467	

𝑛
𝑛!
2! 𝑛 − 2 !

=
2

𝑛 − 1
	468	



	Finally,	 the	probability	of	the	two	fibers	being	different	 is	the	complement:	1 − ]
 KR

=  K_
 KR

.	469	

		470	

8.1	Dynamic	Fitness	Functions		471	

A	possible	objection	to	the	applicability	of	 this	theorem	is	that	 it	seems	to	assume	a	static	472	

fitness	function,	whereas	realistic	scenarios	may	involve	changing,	or	even	rapidly	changing,	473	

fitness	functions.	However,	a	close	scrutiny	of	the	proof	of	the	theorem	reveals	that	at	any	474	

moment,	 the	 fitness	 function	at	that	time	 being	 the	 same	 for	 both	 strategies,	 the	 relative	475	

payoffs	remain	in	the	same	generic	relation	as	at	any	other	moment.	Hence	the	theorem	also	476	

applies	to	dynamically	changing	fitness	functions.	477	

	478	

9.	Discussion	479	

As	we	noted	in	the	Introduction,	it	is	standard	in	the	literature	to	assume	that	more	accurate	480	

perceptions	are	fitter	perceptions	and	that,	therefore,	natural	selection	drives	perception	to	481	

increasing	veridicality—i.e.	to	correspond	increasingly	to	the	“true”	state	of	the	objective	482	

world.	This	assumption	informs	the	prevalent	view	that	human	perception	is,	for	the	most	483	

part,	veridical.			484	

Our	main	message	in	this	paper	has	been	that,	contrary	to	this	prevalent	view,	attempting	to	485	

estimate	the	“true”	state	of	the	world	corresponding	to	a	given	a	sensory	state,	confers	no	486	

evolutionary	benefit	whatsoever.	Rather	a	strategy	that	simply	seeks	to	maximize	expected-487	

fitness	payoff,	with	no	attempt	to	estimate	the	“true”	world	state,	does	consistently	better	488	

(in	the	precise	sense	articulated	in	the	statement	of	the	“Fitness	Beats	Truth”	Theorem).	489	

Indeed,	this	“Fitness-only”	strategy	does	not	estimate	any	single	world	state;	it	simply	490	

 !



averages	over	all	possible	world	states	to	compute	the	expected-fitness	payoff	491	

corresponding	to	any	given	sensory	state	(this	is	analogous	to	a	model-averaging	strategy	in	492	

model	selection).	And	yet,	as	the	theorem	shows,	in	an	evolutionary	competition,	this	493	

strategy	is	likely	to	drive	the	“truth”	strategy	to	extinction.	494	

At	first	glance,	this	expected-fitness	strategy,	based	on	averaging	over	all	possible	world	495	

states,	may	seem	implausible:	After	all,	in	our	own	perceptual	experience,	we	perceive	496	

things	to	be	one	particular	way;	we	certainly	don’t	experience	a	superposition	or	“smear”	497	

resulting	from	averaging	over	various	ways	that	the	world	could	be.	While	this	is	498	

undoubtedly	true,	one	should	note	that	this	is	a	fact	about	perceptual	experience,	and	499	

provides	no	support	whatsoever	for	a	strategy	that	involves	estimating	the	“true”	state	of	500	

the	world.	In	what	follows,	we	sketch	out	a	more	complete	answer	to	the	seeming	501	

implausibility	of	averaging,	based	on	our	Interface	Theory	of	Perception	(Hoffman,	Singh,	&	502	

Prakash,	2015).	503	

For	the	purpose	of	the	current	analysis,	it	was	essential	to	place	the	two	strategies	to	be	504	

compared—“Truth”	and	“Fitness-only”—within	a	common	framework	involving	Bayesian	505	

inference	from	the	space	of	sensory	states,	X,	to	the	world,	W	(recall	Figure	3).	This	allowed	506	

us	to	place	the	two	strategies	on	the	same	footing,	so	they	could	compete	directly	against	507	

each	other.	However,	this	result	strongly	supports	our	belief	that	the	very	idea	of	perception	508	

as	probabilistic	inference	to	states	of	the	objective	world	is	misguided.	Perception	is	indeed	509	

fruitfully	modeled	as	probabilistic	inference,	but	the	inference	happens	in	a	space	of	510	

perceptual	representations,	and	not	in	an	objective	world.		511	

These	ideas	are	part	of	larger	theory,	the	Interface	Theory	of	Perception,	that	we	have	512	

described	in	detail	elsewhere	(Hoffman,	2009;	Hoffman	&	Prakash,	2014;	Hoffman	&	Singh,	513	

2012;	Hoffman,	Singh,	&	Prakash,	2015;	see	also	Koenderink,	2011;	2013;	2014;	von	514	



Uexküll,	1934).	For	the	purposes	of	the	current	discussion,	the	key	point	is	that	the	standard	515	

Bayesian	framework	for	visual	perception	conflates	the	interpretation	space	(or	the	space	516	

of	perceptual	hypotheses	from	which	the	visual	system	much	choose)	with	the	objective	517	

world.	This	is	a	mistake;	it	is	essentially	the	assumption	that	the	language	of	our	perceptual	518	

representation	is	the	correct	language	for	describing	objective	reality—rather	than	simply	a	519	

species-specific	interface	that	has	been	shaped	by	natural	selection.	In	our	ITP	framework,	520	

the	probabilistic	inference	that	results	in	perceptual	experience	takes	place	in	a	space	of	521	

perceptual	representations,	say,	X1,	that	may	have	no	isomorphic	or	even	homomorphic	522	

relation	whatsoever	to	W.	The	extended	framework	of	this	Computational	Evolutionary	523	

Perception	is	sketched	in	Figure	5	(see	Hoffman	&	Singh,	2012;	Hoffman,	Singh,	&	Prakash,	524	

2015;	Singh	&	Hoffman,	2013).	525	

	526	

Figure	5.		The	framework	of	Computational	Evolutionary	Perception	in	which	perceptual	527	

inferences	take	place	in	a	space	of	representations	X1	that	is	not	isomorphic	or	528	

homomorphic	to	W.		The	more	complex	representational	format	of	X1	evolves	because	it	529	

permits	a	higher-capacity	channel	P1 :W → X1 	for	expected	fitness,	thereby	allowing	the	530	

organism	to	choose	and	act	more	effectively	in	the	environment	(i.e.	in	ways	that	result	in	531	

higher	expected-fitness	payoffs).	532	



	533	

Thus,	the	reason	we	generally	perceive	a	single	interpretation	is	because	the	probabilistic	534	

inference	in	the	perceptual	space	X1	generally	results	in	a	unique	interpretation.	But	the	535	

perceptual	space	X1	is	not	the	objective	world,	nor	is	it	homomorphic	to	it.	It	is	simply	a	536	

representational	format	that	has	been	crafted	by	natural	selection	in	order	to	support	more	537	

effective	interactions	with	the	environment	(in	the	sense	of	resulting	in	higher	expected-538	

fitness	payoff).	In	other	words,	a	more	complex	or	higher-dimensional	representational	539	

format	(e.g.	involving	3D	representations	in	𝑋R,	in	place	of	2D	representations	in	𝑋")	evolves	540	

because	it	permits	a	higher-capacity	channel	P1 :W → X1 	for	expected	fitness	(see	Figure	541	

5).	But	this	does	not	in	any	way	entail	that	this	representational	format	somehow	more	542	

closely	“resembles”	the	objective	world.	Evolution	can	fashion	perceptual	systems	that	are,	543	

in	this	sense,	ignorant	of	the	objective	world	because	natural	selection	depends	only	on	544	

fitness	and	not	on	seeing	the	“truth.”	545	

These	considerations	strongly	undermine	the	standard	assumptions	that	seeing	more	546	

veridically	enhances	fitness,	and	that	therefore	one	can	expect	that	human	perception	is	547	

largely	veridical.	As	human	observers,	we	are	prone	to	imputing	structure	to	the	objective	548	

world	that	is	properly	part	of	our	own	perceptual	experience.	For	example,	our	perceived	549	

world	is	three-dimensional	and	populated	with	objects	of	various	shapes,	colors,	and	550	

motions,	and	so	we	tend	to	conclude	that	the	objective	world	is	as	well.	But	if,	as	the	Fitness-551	

beats-Truth	Theorem	shows,	evolutionary	pressures	do	not	push	perception	in	the	direction	552	

of	being	increasingly	reflective	of	objective	reality,	then	such	imputations	have	no	logical	553	

basis	whatsoever.7	554	
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	635	

Appendix:	Calculations	for	the	numerical	example	in	Table	1.	636	

In	this	appendix	we	perform	the	Bayesian	and	expected	fitness	calculations	using	the	data	637	

given	in	Table	1.		638	

To	compute	the	Truth	estimates,	we	first	need	the	probability	of	each	stimulation	ℙ(𝑥R)	and	639	

ℙ(𝑥]).	These	can	be	computed	by	marginalizing	over	the	priors	in	the	world	as	follows:		640	

ℙ(𝑥R) = 𝑝(𝑥R 𝑤R 𝜇 𝑤R + p 𝑥R 𝑤] 𝜇 𝑤] + p 𝑥R 𝑤_ 𝜇 𝑤_ = R
¡
. R
¢
+ _

¡
. _
¢
+ R

¡
. _
¢
= R_

]£
		641	

ℙ(𝑥]) = 𝑝(𝑥] 𝑤R 𝜇 𝑤R + p 𝑥] 𝑤] 𝜇 𝑤] + p 𝑥] 𝑤_ 𝜇 𝑤_ = _
¡
. R
¢
+ R

¡
. _
¢
+ _

¡
. _
¢
= R¤

]£
		642	



By	Bayes’	Theorem,	the	posterior	probabilities	of	the	world	states,	given	𝑥R,	are			643	

𝑝(𝑤R 𝑥R = 𝑝 𝑥R 𝑤R .
𝜇 𝑤R
ℙ 𝑥R

=
1
4
.
1
7
/
13
28

=
1
13
	644	

𝑝(𝑤] 𝑥R = 𝑝 𝑥R 𝑤] .
𝜇 𝑤]
ℙ 𝑥R

=
3
4
.
3
7
/
13
28

=
9
13
	645	

𝑝(𝑤_ 𝑥R = 𝑝 𝑥R 𝑤_ .
𝜇 𝑤_
ℙ 𝑥R

=
1
4
.
3
7
/
13
28

=
3
13
	646	

Thus	the	maximum	a	posteriori,	or	Truth	estimate	for	stimulus	𝑥R	is	𝑤].		647	

Posterior	probabilities	of	the	world	states,	given	𝑠],	are:	648	

𝑝(𝑤R 𝑥] = 𝑝 𝑥] 𝑤R .
𝜇 𝑤R
ℙ 𝑥]

=
3
4
.
1
7
/
15
28

=
1
5
	649	

𝑝(𝑤] 𝑥] = 𝑝 𝑥] 𝑤] .
𝜇 2
ℙ 𝑥]

=
1
4
.
3
7
/
15
28

=
1
5
	650	

𝑝(𝑤_ 𝑥] = 𝑝 𝑥] 𝑤_ .
𝜇 𝑤_
ℙ 𝑥]

=
3
4
.
3
7
/
15
28

=
3
5
	651	

Thus	the	maximum	a	posteriori,	or	Truth	estimate	for	stimulus	𝑥]	is	𝑤_.		652	

Finally,	 the	 expected-fitness	 values	 of	 the	 different	 sensory	 stimulations	𝑥R	and	𝑥]	are,	653	

respectively:		654	

𝐹 𝑥R = 𝑝(𝑤R 𝑥R 𝑓 𝑤R + 𝑝(𝑤] 𝑥R 𝑓 𝑤] + 𝑝(𝑤_ 𝑥R 𝑓 𝑤_ =
1
13
. 20 +

9
13
. 4 +

3
13
. 3 = 5;	655	

		𝐹 𝑥] = 𝑝(𝑤R 𝑥] 𝑓 𝑤R + 𝑝(𝑤] 𝑥] 𝑓 𝑤] + 𝑝(𝑤_ 𝑥] 𝑓 𝑤_ = R
¤
. 20 + R

¤
. 4 + _

¤
. 3 = 6.6.		656	

Thus	𝑥]	has	a	larger	expected	fitness	than	𝑥R.		657	
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	659	

	660	

	661	

Highlights	662	

• We	make	rigorous	mathematical	definitions	of	two	perceptual	strategies	employable	663	
by	a	given	species,	for	a	given	action	class	and	within	a	given	environment:	Truth,	664	
based	on	Bayesian	estimation	of	assumed	objective	properties	of	the	world,	and	665	
Fitness,	tuned	to	an	arbitrary	fitness	function;	666	

• Under	the	assumption	of	universal	Darwinism	(Dennett,	1995)	we	subject	the	two	667	
strategies	to	an	evolutionary	game	analysis;	668	

• We	conclude	that	the	Fitness	will	generally	drive	Truth	to	extinction,	for	generic	669	
fitness	functions	and	priors;	670	

• The	likelihood	of	Fitness	dominating	Truth	exceeds	1/2	as	soon	as	the	sensorium	has	671	
more	than	five	elements,	and	rises	monotonically	to	1	as	the	size	of	the	sensorium	672	
grows	towards	infinity;	673	

• This	theorem	holds	in	the	presence	of	changing	fitness	functions	and	for	large	finite	674	
populations.	675	
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