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Abstract 

 Does natural selection favor veridical percepts—those that accurately (if not 

exhaustively) depict objective reality? Perceptual and cognitive scientists standardly 

claim that it does. Here we formalize this claim using the tools of evolutionary game 

theory and Bayesian decision theory. We state and prove the "Fitness-Beats-Truth (FBT) 

Theorem" which shows that the claim is false: If one starts with the assumption 

that perception involves inference to states of the objective world, then the FBT Theorem 

shows that a strategy that simply seeks to maximize expected-fitness payoff, with no 

attempt to estimate the “true” world state, does consistently better. More precisely, the 

FBT Theorem provides a quantitative measure of the extent to which the fitness-only 

strategy dominates the truth strategy, and of how this dominance increases with the size 

of the perceptual space. The FBT Theorem supports the Interface Theory of Perception 

(e.g. Hoffman, Singh & Prakash, 2015), which proposes that our perceptual systems have 

evolved to provide a species-specific interface to guide adaptive behavior, and not to 

provide a veridical representation of objective reality. 

 

 

 

Keywords: Perception; Veridicality; Evolutionary Psychology; Bayesian Decision 
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Introduction 

 It is standard in the perceptual and cognitive sciences to assume that more 

accurate percepts are fitter percepts and, therefore, that natural selection drives perception 

to be increasingly veridical, i.e. to reflect the objective world in an increasingly accurate 

manner. This assumption forms the justification for the prevalent view that human 

perception is, for the most part, veridical.  For example, in his classic book Vision, Marr 

(1982) argued that: 

“We ... very definitely do compute explicit properties of the real visible surfaces 

out there, and one interesting aspect of the evolution of visual systems is the 

gradual movement toward the difficult task of representing progressively more 

objective aspects of the visual world”. (p. 340) 

Similarly, in his book Vision Science, Palmer (1999) states that: 

“Evolutionarily speaking, visual perception is useful only if it is reasonably 

accurate ... Indeed, vision is useful precisely because it is so accurate. By and 

large, what you see is what you get. When this is true, we have what is called 

veridical perception ... perception that is consistent with the actual state of affairs 

in the environment. This is almost always the case with vision.”  

In discussing perception within an evolutionary context, Geisler and Diehl (2003) 

similarly assume that: 

 “In general, (perceptual) estimates that are nearer the truth have greater utility 

than those that are wide off the mark.” 
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In their more recent book on human and machine vision, Pizlo et al. (2014) go so far as to 

say that: 

“…veridicality is an essential characteristic of perception and cognition. It is 

absolutely essential. Perception and cognition without veridicality would be like 

physics without the conservation laws.” (p. 227, emphasis theirs.) 

 These statements reflect three assumptions that are useful to distinguish. The first 

is that all organisms are embedded in and are continually interacting with an "objective" 

world whose properties can be specified entirely independently of the state or even the 

existence of any particular organism. The second—the assumption of veridicality—is that 

at least for humans (and presumably for other “higher” organisms), the apparent state of 

the world is homomorphic to the actual state of the world. The third, generally implicit, 

assumption is that (at least for humans) this veridical state of the world is the apparent 

state of the world that is consciously experienced. The actual state of the world is, in 

particular, assumed to objectively have the attributes assigned to it by human perceptual 

experience.  

 Our perceived world is three-dimensional, and is inhabited by objects of various 

shapes, colors, and motions. Perceptual and cognitive scientists thus typically assume that 

the objective world is three-dimensional, and is inhabited by objects of those very shapes, 

colors, and motions. In other words, they assume that the vocabulary of our perceptual 

representations is the correct vocabulary for describing the objective world and, moreover, 

that the specific attributes we perceive typically reflect the actual attributes of the 
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objective world. These assumptions are embodied within the standard Bayesian 

framework for visual perception, as we will see in the next section. 

 This standard assumption of veridical percepts goes hand-in-hand with the 

framework of inverse optics in vision science: It is standardly assumed that the goal of 

the visual system is to “undo” the effects of optical projection (or rendering) from 3D 

scenes to 2D images (e.g. Adelson & Pentland, 1996; Pizlo, 2001). This presumably 

allows vision to “recover” the 3D scene that is most likely to have produced any given 

image(s). As we will see in Section 2, the inverse optics conception also forms the basis 

of the standard Bayesian framework for vision. And within this Bayesian formulation, 

veridicality corresponds to the strategy of finding the 3D scene—the perceived 

interpretation—that has the highest probability of being the “correct” one, given any 

image(s). 

 Many vision scientists agree that perception is not always veridical, but most 

visual scientists believe that it is at least approximately veridical. While we might not 

visually experience the correct three-dimensional shape of some, or even most objects, 

for example, it is almost universally assumed that there are objects in the world that have 

well-defined, fully-objective and hence completely observer-independent three-

dimensional shapes that could, at least in principle, be accurately experienced by an 

"ideal" observer.  

 Some proponents of embodied cognition deny the claim that perception is 

normally veridical (e.g. Chemero, 2009). We agree with them to the extent that they also 

emphasize guidance of adaptive behavior, rather than veridicality, as the key force in the 
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evolution of perceptual systems. We disagree, however, with other aspects of the 

embodied-cognition framework in so far as it minimizes the contribution of information 

processing and/or representations. 

 In what follows, veridicality will be represented by the “truth” strategy. We define 

an alternative “fitness-only” strategy that does not assume veridical perception. In order 

to compare the two strategies—truth vs. fitness-only—we place them in competition in an 

evolutionary resource-game context. Given some sensory inputs, the truth strategy 

attempts to estimate the most probable world interpretation for each input. (In some 

instances, this process may result in two or more equally probable interpretations, such as 

in the well-known Necker cube.) It then compares the fitness of these most probable 

world estimates, and picks the one with the highest fitness. The fitness-only strategy, on 

the other hand, makes no attempt to estimate the most likely world state corresponding to 

each sensory input. It simply computes the expected fitness corresponding to each input 

directly, via the posterior distribution (so that the fitness of any world state is weighted by 

its posterior probability). We prove that organisms whose resource-collecting behavior is 

governed by the fitness-only strategy dominate those utilizing the truth strategy. Indeed, 

our “fitness beats truth” theorem provides a quantitative measure of the extent to which 

the fitness-only strategy dominates the truth strategy, as well as how this dominance 

varies with the size of the perceptual space.  

 The “fitness beats truth” theorem therefore strongly calls into question the 

standard view that more accurate percepts are fitter, and hence that natural selection 

evolves perceptual systems to have more and more veridical percepts. This, in turn, calls 

into question the received textbook view in vision science that human vision is mostly 



	 																																																																																																									Fitness	Beats	Truth		
	 	 	
	

8	

veridical, and even that its goal is to “invert optics”—i.e. to “undo” the effects of optical 

projection from 3D objects to 2D images. If our percepts do not correspond to reality, 

then 3D objects themselves are simply part of our own species-specific perceptual 

interface, and not part of objective reality. Capturing this new understanding in formal 

terms requires a novel framework—different than the standard Bayesian model for 

vision—which we call Computational Evolutionary Perception, and which we outline in 

the Discussion section (see also Hoffman & Singh, 2012; Singh & Hoffman, 2013; 

Hoffman, Singh, & Prakash, 2015).   

 

The standard Bayesian framework for visual perception 

 The standard approach to visual perception treats it as a problem of inverse optics: 

The “objective world”— generally taken to be 3D scenes consisting of objects, surfaces, 

and light sources—projects 2D images onto the retinas. Given a retinal image, the visual 

system’s goal is to infer the 3D scene that is most likely to have projected it (e.g. Adelson 

& Pentland, 1996; Knill & Richards, 1996; Mamassian, Landy, & Maloney, 2002; 

Shepard, 1994; Yuille & Bülthoff, 1996). Since a 2D image does not uniquely specify a 

3D scene, the only way to infer a 3D scene is to bring additional assumptions or “biases” 

to bear on the problem, based on prior experience—whether phylogenetic or ontogenetic 

(Feldman, 2013; Geisler et al. 2001). For example, in inferring 3D shape from image 

shading, the visual system appears to make the assumption that the light source is more 

likely to be overhead (e.g. Kleffner & Ramachandran, 1992). Similarly, in inferring 3D 
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shape from 2D contours, it appears to use the assumption that 3D objects are maximally 

compact and symmetric (e.g. Li et al., 2013). 

 Formally, given an image 𝑥", the visual system aims to find the “best” (generally 

taken to mean “most probable”) scene interpretation in the world. In probabilistic terms, 

it must compare the posterior probability ℙ(𝑤|𝑥") of various scene interpretations 𝑤, 

given the image 𝑥". By Bayes’ Rule, the posterior probability is given by: 

  ℙ(𝑤|𝑥") =
ℙ)𝑥"*𝑤+∙ℙ(-)

ℙ(./)
  

Since the denominator term ℙ(𝑥") does not depend on 𝑤, it plays no essential role in 

comparing the relative posterior probabilities of different scene interpretations w. The 

posterior probability is thus proportional to the product of two terms: The first is the 

likelihood ℙ(𝑥"|𝑤) of any candidate scene interpretation w; this is the probability that the 

candidate scene w could have projected (or generated) the given image 𝑥". Because any 

2D image is typically consistent with many different 3D scenes, the likelihood will often 

be equally high for a number of candidate scenes. The second term is the prior probability 

ℙ(𝑤) of a scene interpretation; this is the probability that the system implicitly assigns to 

different candidate scenes, even prior to observing any image. For example, the visual 

system may implicitly assign higher prior probabilities to scenes where the light source is 

overhead, or to scenes that contain compact objects with certain symmetries. Thus, when 

multiple scenes have equally high likelihoods (i.e. are equally consistent with the image), 

the prior can serve as a disambiguating factor. 
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 Application of Bayes’ Rule yields a probability distribution on the space of 

candidate scenes—the posterior distribution. A standard way to pick a single “best” 

interpretation from this distribution is to choose the world scene that has the maximal 

posterior probability—one that, statistically speaking, has the highest probability of being 

the “correct” one, given the image 𝑥". This is the maximum-a-posteriori or MAP estimate. 

More generally, the strategy one adopts for picking the “best” answer from the posterior 

distribution depends on the choice of a loss (or gain) function, which describes the 

consequences of making “errors,” i.e. picking an interpretation that deviates from the 

“true” (but unknown) world state by varying extents. The MAP strategy follows under a 

Dirac-delta loss function—no loss for the “correct” answer (or “nearly correct” within 

some tolerance), and equal loss for everything else. Other loss functions (such as the 

squared-error loss) yield other choice strategies (such as the mean of the posterior 

distribution; see e.g. Mamassian et al., 2002). But we focus on the MAP estimate here 

because it yields, in a well-defined sense, the highest probability of picking the “true” 

scene interpretation within this framework. 

 This standard Bayesian approach embodies the “veridicality” or “truth” approach 

to visual perception. We do not mean, of course, that the Bayesian observer always gets 

the “correct” interpretation. Given the inductive nature of the problem, that would be a 

mathematical impossibility. It is nevertheless true that:  

(i) The space of hypotheses or interpretations from which the Bayesian observer 

chooses is assumed to correspond to the objective world (i.e. to the space of 

possible objective-world states). That is, the vocabulary of perceptual 
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experiences is assumed to be the right vocabulary for describing objective 

reality.  

(ii) Given this setup, the MAP strategy maximizes—statistically speaking—the 

probability of picking the “true” world state. 

 The framework described above constitutes the standard Bayesian framework for 

vision—i.e. the way in which Bayes’ Theorem is standardly applied in modern vision 

science to model various problems in visual perception. This is not, however, the only 

way to apply Bayes’ Theorem to problems in vision, and indeed in the Discussion section 

we will provide and alternative framework that incorporates not only Bayesian inference, 

but evolutionary fitness as well. 

 

Evolution and Fitness 

 The Bayesian framework, with the standard interpretation summarized above, 

focuses on estimating the world state that has the highest probability of being the “true” 

one, given some sensory input. This Bayesian estimation involves no explicit notion of 

evolutionary fitness (although by defining prior probabilities over states w of the world, it 

implicitly builds in the assumption that truer percepts are more fit). As we noted above, 

approaches based on Bayesian Decision Theory (BDT) do involve a loss (or gain / utility) 

function. It is important to note, however, that this is quite distinct from a fitness function 

(defined below). The loss function of BDT describes the consequences of making “errors,” 

i.e. picking an interpretation that deviates from the “true” world state by varying extents. 

It is therefore a function of two variables: (i) the observer’s estimate / interpretation, and 
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(ii) the “true” state of the world. By contrast, the evolutionary fitness function involves 

no dependence on the observer’s estimate (whereas it does depend on the observer, its 

state, and the action class in question; see below).  

 In evolutionary theory, fitness is a measure of the probability of transferring genes, 

and therefore characteristics, into the next generation (Maynard Smith, 1989). The effects 

on fitness of different decisions or behaviors by an organism or population can be 

represented by a global fitness function f(w, o, s, a) that depends, in general, on the state 

w of the world W in which behavior takes place, the organism o executing the behavior 

(e.g., a lion vs. a rabbit), the organism’s state s (e.g., hungry vs. satiated), and the action a 

that is executed (e.g., feeding vs. mating). Fitness functions vary widely between 

organisms; indeed the diversity of extant organisms indicates that the correlation between 

fitness functions for distinct organisms can be arbitrarily small. For any particular 

organism, the complexity of the fitness function can be expected to increase rapidly as 

the number of its possible states and actions increases; even the fitness function for a 

bacterium is extraordinarily complex.  

 To examine the behavior of f(w, o, s, a) in a game-theoretic context, we can think 

of organisms of different kinds as competing to gather “fitness points” as they interact 

within the shared “environment” W (Maynard Smith, 1982). In such a competitive game, 

natural selection favors percepts and choices that yield more fitness points. For simplicity, 

we consider evolutionary games between organisms of the same type o, in the same state 

s, and with only a single available action a. In this case, we can model a specific fitness 

function as simply a (non-negative) real-valued function 𝑓:	𝑊 →	 [0,∞) defined on the 

world W.   
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 In order to compare the fitness of different perceptual and/or choice strategies, 

one pits them against one another in an evolutionary resource game (for simulations 

exemplifying the results of this paper, see, e.g., Mark, Marion, & Hoffman, 2010; Marion, 

2013; and Mark, 2013). In a typical game, two organisms employing different strategies 

compete for available territories, each with a certain number of resources. The first player 

observes the available territories, chooses what it estimates to be its optimal one, and 

receives the fitness payoff for that territory. The second player then chooses its optimal 

territory from the remaining available ones. The two organisms thus take turns in picking 

territories, seeking to maximize their fitness payoffs.  

 In this case, the quantity of resources in any given territory is the relevant world 

attribute w. That is, W is here interpreted as depicting different quantities of some 

relevant resource. We can then consider a perceptual map , where X is the set 

of possible perceptual states, together with an ordering on it: P picks out the “best” 

element of X in a sense relevant to the perceptual strategy. One may, for instance, 

imagine a simple organism whose perceptual system has only a small number of distinct 

perceptual states. Its perceptual map would then be some way of mapping various 

quantities of the resource to the small set of available perceptual states. As an example, 

Figure 1 shows two possible perceptual mappings, i.e. two ways of mapping the quantity 

of resources (here, ranging from 0 through 100) to four available sensory categories (here 

depicted here by the four colors R, Y, G, B). 

 In addition, there is a fitness function on W, 𝑓:	𝑊 →	 [0,∞), which assigns a non-

negative fitness value to each resource quantity.  One can imagine fitness functions that 

are monotonic (e.g. fitness may increase linearly or logarithmically with the number of 

P :W → X
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resources), or highly non-monotonic (e.g. fitness may peak for a certain number of 

resources, and decrease in either direction). Monotonic fitness functions can be expected 

to be rare; it is possible to have “too much” of a typical resource. The vast majority of 

fitness functions will be non-monotonic (such as the one shown in Figure 2): too little 

water and one dies of thirst, too much water and one drowns. Similar arguments apply to 

the level of salt, or to the proportion of oxygen and indeed most other resources.  Given 

the ubiquitous need for organisms to maintain homoeostasis, and the invariably limited 

energetic resources available to do so, one expects most fitness functions to be non-

monotonic. In what follows, we will consider fitness functions generically, among which 

monotonic functions constitute an extremely small subset.1  

 One simple consequence of non-monotonic fitness functions is that fitness and 

“truth” are not in general correlated. It is sometimes argued that a strategy based on 

fitness works simply because it allows one to approximate the truth.  In the absence of 

any generic correlations between fitness and truth, however, this argument carries little 

weight. It is in fact not meaningful to view fitness functions as “approximating” the truth. 

Recall also that, while fitness clearly depends on the world (“truth”), it also depends on 

the organism, its state, and the action class in question. Thus, considering a different 

organism, or the same organism in a different state, or in the context of a different action 

class, will result in very different fitness values—even as the world remains unchanged. 
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Comparing perceptual strategies: “Truth” vs. “Fitness-only” 

 In the context of these evolutionary games, in which perceptual strategies 

compete for resource acquisition, we assume that the organism’s behavior depends on 

three fixed elements: the specific fitness function (in a particular state and for a particular 

action class), its prior, and its perceptual map from world states (i.e. resource-containing 

territories) to sensory states  (see Figure 3). On any given trial, the organism observes a 

number of available territories through its sensory states, say x1, x2,…, xn. Its goal is to 

pick one of these territories, seeking to maximize its fitness payoff. One can now 

consider two possible resource strategies: 

 The “Truth” strategy: For each of the n sensory states, the organism estimates the 

world state or territory - the Bayesian MAP estimate - that has the highest probability of 

being the “true” one, given that sensory state. It then compares the fitness values for these 

n “true” world states. Finally, it makes its choice of territory based on the sensory state xi 

that yields the highest fitness. Its choice is thus mediated through the MAP estimate of 

the world state: it cannot choose a territory that does not qualify as “true.” The "Truth" 

strategy ignores any fitness information about possible states of the world other than the 

one selected as being the "true" state.  

 The “Fitness-only” strategy: In this strategy, the organism makes no attempt to 

estimate the “true” world state corresponding to each sensory state. Rather it directly 

computes the expected fitness payoff that would result from each possible choice of xi. 

For a given sensory state xi, there is a posterior probability distribution (given, as with the 

Truth strategy, by Bayes’ formula) on the possible world states, as well as a fitness value 
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corresponding to each world state. The organism weights these fitness values by the 

posterior probability distribution, in order to compute the expected fitness that would 

result from the choice xi. And it picks the one with the highest expected fitness. 

 

Results from Evolutionary Game Theory 

 In an evolutionary game between the two strategies, say A and B, the payoff 

matrix is as follows:  

𝑎𝑔𝑎𝑖𝑛𝑠𝑡	𝐴 𝑎𝑔𝑎𝑖𝑛𝑠𝑡	𝐵
𝐴	𝑝𝑙𝑎𝑦𝑠 𝑎 𝑏
𝐵	𝑝𝑙𝑎𝑦𝑠 𝑐 𝑑

 

Here a, b, c, and d denote the various payoffs to the row player when playing against the 

column player. E.g., b is the payoff to A when playing B. We will refer to three main 

theorems from evolutionary game theory relevant to our analysis, as follows. 

 We first consider games with infinite populations. These are investigated by 

means of a deterministic differential equation, called the replicator equation, where time 

is the independent variable and the relative population sizes 𝑥G, 𝑥H	are the dependent 

variables, with 𝑥G + 𝑥H = 1 (Taylor and Jonker, 1978, Hofbauer and Sigmund, 1990, 

Nowak 2006). In this context, there are four generic behaviors in the long run:  

Theorem 1. (Nowak 2006) In a game with an infinite population of two types, A and B, of 

players, either  
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(i) A dominates B (in the sense that a non-zero proportion of A players will 

eventually take over the whole population), if 𝑎 ≥ 𝑐 and b	≥ 𝑑, with at least one 

of the inequalities being strict; 

(ii) B dominates A, if 𝑎 ≤ 𝑐 and b	≤ 𝑑, with at least one of the inequalities being 

strict; 

(iii) A and B coexist, if 𝑎 ≤ 𝑐 and b	≥ 𝑑 (with at least one of the inequalities being 

strict), at a stable equilibrium given by 𝑥G∗ =
NOP

NQROSOP
 (and 𝑥H∗ = 1 − 𝑥G∗); 

(iv) The system is bistable, if 𝑎 ≥ 𝑐 and b	≤ 𝑑 (with at least one of the inequalities 

being strict) and will tend towards either all A or all B from an unstable 

equilibrium at the same value of  𝑥G∗ as above. 

A fifth, non-generic possibility is that 𝑎 = 𝑐 and b = 𝑑, in which case we have that A and 

B are neutral variants of one another: any mixture of them is stable.  

 Games with a finite population size N can be analyzed via a stochastic, as against 

deterministic, approach. The dynamics are described by a birth-death process, called the 

Moran process (Moran 1958). The results are more nuanced than in the infinite 

population sized case: there are now eight possible equilibrium behaviors, and they are 

population dependent, not just payoff dependent.  

 Let 𝜌GH  denote the fixation probability of a single A individual in a population of 

N-1 B individuals replacing (i.e., taking over completely) that population. Similarly, let 

Let 𝜌HG  denote the fixation probability of a single B individual in a population of N-1 of 

A individuals replacing (i.e., taking over completely) that population. In the absence of 

any selection, we have the situation of neutral drift, where the probability of either of 



	 																																																																																																									Fitness	Beats	Truth		
	 	 	
	

18	

these events is just V
W

.  We say that selection favors A replacing B if 𝜌GH >
V
W

 and that 

selection favors B replacing A if 𝜌HG >
V
W

.  

 By analyzing the probabilities of a single individual of each type interacting with 

an individual of either type, or of dying off, we can use the payoff matrix above to 

compute the fitness 𝐹Z, when there are i entities of type A, and the fitness 𝐺Z of (the N-i 

individuals) of type B. If we set ℎZ = 𝐹Z − 𝐺Z (𝑖 = 1, . . . , 𝑁), we can see that ℎV > 0 

implies that selection favors A invading B, while ℎWOV > 0 implies that selection favors B 

invading A. There are now sixteen possibilities, depending upon whether selection favors 

A replacing B or not; B replacing A or not; whether selection favors A invading B or not; 

and whether selection favors B invading A or not. Of these, eight are ruled out by a 

theorem of Taylor, Fudenberg, Sasaki and Nowak (2004). A full description is provided 

in that paper, along with a number of theorems detailing the possibilities in terms of the 

payoff values and population size. Their Theorem 6, interpreted below as our Theorem 2, 

is most relevant to our analysis of evolutionary resource games: it gives conditions under 

which selection is independent of population size and is reproduced below. Interestingly, 

for finite populations the relationship between payoffs b and c becomes relevant: 

Theorem 2.  In a game with a finite population of two types of players, A and B, if  𝑏 >

𝑐, 𝑎 > 𝑐 and 𝑏 > 𝑑, we have for all N, ℎZ > 0	∀𝑖 and 𝜌GH >
V
W
> 𝜌HG: selection favors A. 

 Finally, we also consider, within large finite populations, the limit of weak 

selection. In order to model the strength of selection, a new parameter w is introduced. 

This parameter, lying between 0 and 1, is a measure of the strength of selection: we write 
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the fitness of A now as 𝑓Z = 1 − 𝑤 +𝑤𝐹Z and the fitness of B now as 𝑔Z = 1 − 𝑤 + 𝑤𝐺Z. 

When 𝑤 = 0, there is no selection: the fitnesses are equal and we have neutral drift. 

When 𝑤 = 1, we have selection at full strength. An analysis of the dynamics of the 

Moran process under weak selection (i.e., in the limit as 𝑤 → 0), reveals (following 

Nowak 2006, equation 7.11) that: 

Theorem 3. In a game with a finite population of two types of players, A and B, and with 

weak selection, (𝑎 − 𝑐) + 2(𝑏 − 𝑑) > a(SOR)O(NOP)
W

 implies that 𝜌GH >
V
W

. Thus, if 𝑎 > 𝑐 

and 𝑏 > 𝑑, for large enough N, selection favors A.2 

 

Evolutionary Resource Games 

  For our situation of two resource strategies, we may define the payoff matrix as 

follows: 

a: to Fitness-Only when playing against 

Fitness-Only 

b: to Fitness-Only when playing against 

Truth 

c: to Truth when playing against Fitness-

Only 

d: to Truth when playing against Truth 

 

 In a game with a very large (effectively infinite) number of players, the Fitness-

Only resource strategy dominates the Truth strategy (in the sense that Fitness-Only will 

eventually drive Truth to extinction) if the payoffs to Fitness-Only as first player always 

exceed those of Truth as first player, regardless of who the second player is, i.e. if  !a ≥c
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and  and at least one of these is a strict inequality. If neither of these inequalities is 

strict, then at the least Fitness-Only will never be dominated by Truth.  

 Our main claim in this paper is that the Truth strategy—attempting to infer the 

“true” state of the world that most likely corresponds to a given sensory state—confers no 

evolutionary advantage to an organism. In the next section, we state and prove a 

theorem—the “Fitness Beats Truth" theorem—which states that Fitness-Only will never 

be dominated by Truth. Indeed, the Truth strategy will generally result in a lower 

expected-fitness payoff than the Fitness-Only strategy, and is thus likely to go extinct in 

any evolutionary competition against the Fitness-Only strategy. (The statement of the 

FBT theorem articulates the precise way in which this is true.) We begin, first, with a 

numerical example that exemplifies this. 

Numerical Example of Fitness Beating Truth 

 We give a simple example to pave the way for the ideas to follow. Suppose there 

are three states of the world, 𝑊 = {𝑤V,𝑤a, 𝑤c} and two possible sensory stimulations, 

𝑋 = {𝑥V, 𝑥a}. Each world state can give rise to a sensory stimulation according to the 

information contained in Table 1. The first two columns give the likelihood 

values,	ℙ(𝑥|𝑤), for each sensory stimulation, given a particular world state; for instance, 

ℙ(	𝑥V|	𝑤a) = 3/4. The third column gives the prior probabilities of the world states. The 

fourth column shows the fitness associated with each world state. If we think of the world 

states as three different kinds of food that an organism might eat, then these values 

correspond to the fitness benefit an organism would get by eating one of the foods. With 

this analogy, 𝑤V corresponds to an extremely healthful (but relatively rare) food, while 

!b ≥d
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𝑤a and 𝑤c correspond to moderately healthful (and more common) foods, with 𝑤a being 

more healthful than 𝑤c (see Table 1). This setup is the backdrop for a simple game where 

observers are presented with two sensory stimulations and forced to choose between them. 

 Using Bayes’ theorem we have calculated (see Appendix) that for 𝑥V the Truth 

(i.e. the maximum-a-posteriori) estimate is 𝑤a, and that for 𝑥a this estimate is 𝑤c. Thus, 

if a Truth observer is offered a choice between two foods to eat, one that gives it 

stimulation 𝑥V and one that gives it stimulation 𝑥a, it will perceive that it has been offered 

a choice between the foods 𝑤a and 𝑤c. Assuming that it has been shaped by natural 

selection to choose, when possible, the food with greater fitness, it will always prefer 𝑤a. 

So, when offered a choice between 𝑥V and 𝑥a, the Truth observer will always choose 𝑥V, 

with an expected utility of 5.  

 Now suppose a Fitness-only observer is given the same choice. The Fitness-only 

observer is not at all concerned with which “veridical” food these signals most likely 

correspond to, but has been shaped by natural selection to only care about which stimulus 

yields a higher expected fitness. We have calculated (see Appendix) that the expected 

fitness of sensory stimulation 𝑥V is 5 and the expected utility of stimulation 𝑥a	is 6.6. 

Thus, when offered a choice between 𝑥V and 𝑥a, the Fitness-only observer will always, 

maximizing expected fitness, choose 𝑥a.  

 The implications of these results are clear. Consider a population of Truth 

observers competing for resources against a population of Fitness-only observers, both 

occupying the niche described by Table 1. Since, in this case, the Truth observer’s choice 

minimizes expected fitness and the Fitness-only observer’s choice maximizes expected 
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fitness, the Fitness-only population will be expected to drive the population of Truth 

observers to extinction. Seeing truth can minimize fitness; thereby leading to extinction. 

This conclusion is apart from considerations of the extra energy required to keep track of 

truth (see Mark, Marion and Hoffman 2010, for discussion on energy resources). 

 In psychological terms, the advantage of Fitness-only over Truth in the niche 

described by Table 1 is due to perceptual ambiguity: the percept 𝑥a is ambiguous 

between the excellent resource 𝑤V and the moderately-good resource 𝑤c. Ambiguous 

percepts are, however, common; percepts can indeed be ambiguous between very good 

and very bad outcomes, as stock pickers, sushi connoisseurs and practitioners of serial 

romance know all too well. The Truth player executes a correct MAP estimate, but 

ignores the possibility of ambiguity along the dimension that actually matters, i.e. fitness. 

A high value of fitness associated with 𝑥a  is not plausible given the low value of the 

prior P(𝑤V). By choosing the MAP estimate instead of performing a full expected fitness 

calculation, the Truth player “jumps to conclusions” along the most important dimension. 

From this perspective, employing the Truth strategy is a fallacy of practical reasoning, 

analogous in its effects to ignoring priors when estimating posterior probabilities 

(Kahneman, 2011).  

 

Mathematical Background for the Main Theorem 

 We assume that there is a fixed preliminary map, p, which associates to each 

world state 𝑤 ∈ 𝑊a sensory state 𝑥 ∈ 𝑋. And we assume a fitness map on W (recall 

Figure 3). This places the Truth strategy and the Fitness-only strategy on a common 
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footing where they can be set in direct competition against each other within the context 

of an evolutionary resource game.  

 We begin with some definitions and assumptions regarding these spaces and maps. 

 It will suffice for a basic understanding of what follows to think of W as a finite 

set (as in the example in 6.1).3 In general, we take the world W to be a compact regular 

Borel space whose collection of measurable events is a 𝜎-algebra, denoted ℬ.4 We 

assume that < 𝑊,ℬ > comes equipped with an a priori probability measure 𝜇 on ℬ. We 

will consider only those probability measures 𝜇 that are absolutely continuous with 

respect to the Borel measure on ℬ. That is, if we write d𝑤 for the uniform, or Borel, 

probability measure on W, then the a priori measure satisfies 𝜇(𝑑𝑤) = 𝑔(𝑤)	d𝑤. Here 

𝑔:𝑊 → ℝQ is some non-negative measurable function, called the density of 𝜇, satisfying 

	∫ 𝑔(𝑤)	d𝑤 = 1. We will take any such density to be continuous, so that it always 

achieves its maximum on the compact set W. This constitutes the structure of the world: a 

structure that applies to most of the studied biological and perceptual situations. 

 We may assume that a given species interacts with its world, employing a 

perceptual mapping that “observes” the world via a measurable map 𝑝:	𝑊 → 𝑋. We refer 

to this as a pure perceptual map because it involves no dispersion: each world state can 

yield only a single sensory state x. We assume that the set of perceptual states X is a finite 

set, with the standard discrete 𝜎-algebra 𝒳, i.e., its power set (so that all subsets of X are 

measurable). In the general case, the perceptual map may have dispersion (or noise), and 

is mathematically expressed as a Markovian kernel 𝑝:𝑊 ×𝒳 → [0,1].	That is, for every 

element w in W, the kernel p assigns a probability distribution on X (hence it assigns a 
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probability value to each measurable subset of X). Because X is finite and all of its 

subsets are measurable, here the kernel may be viewed simply as assigning, for every 

element w in W, a probability value to each element of X. 

General Perceptual Mappings and Bayesian Inference  

 We use the letter ℙ to indicate any relevant probability. Bayesian inference 

consists in a computation of the conditional probability measure ℙ(d𝑤	|	𝑥) on the world, 

given a particular perception 𝑥 in X. The likelihood function is the probability ℙ(𝑥	|	𝑤) 

that a particular world state 𝑤 could have given rise to the observed sensory state 𝑥.	Then 

the conditional probability distribution ℙ(𝑑𝑤	|	𝑥) is the posterior probability distribution 

in a (partially) continuous version of Bayes formula: 

ℙ(d𝑤	|	𝑥) =
ℙ(𝑥	|	𝑤)		ℙ(d𝑤)

ℙ(𝑥) . 

Since 𝜇, the prior on W, has a density 𝑔 with respect to the Borel measure d𝑤, we can 

recast this formula in terms of 𝑔:  indeed, ℙ(d𝑤	|	𝑥) also has a conditional density, 

𝑔(𝑤	|	𝑥), with respect to the Borel measure5 and we obtain 

𝑔(𝑤	|	𝑥) =
ℙ(𝑥	|	𝑤)		𝑔(𝑤)
∫ℙ(𝑥	|	𝑤′)	𝑔(𝑤′)

. 

 We now define a maximum a posteriori estimate for 𝑥 in X to be any 𝑤. at which 

this conditional density is maximized: 𝑔(𝑤.	|𝑥) = max{	𝑔(𝑤	|𝑥)	|	𝑤 ∈ 𝑊}.  At least one 

such maximum will exist, since 𝑔 is bounded and piecewise continuous; however, there 

could be multiple such estimates for each 𝑥. 
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 For a given sensory state 𝑥, the only world states that could have given rise to it 

lie in the fiber over 𝑥, i.e., the set 𝑝OV{𝑥} ⊂ 𝑊. So, for a given 𝑥, the mapping 𝑤 →

ℙ(𝑥	|	𝑤) takes the value 1 on the fiber, and is zero everywhere else. This mapping may 

thus be viewed as the indicator function of this fiber. We denote this indicator function 

by 1vwx{.}(𝑤). 

 For a pure mapping the conditional density is just 

𝑔(𝑤	|	𝑥) =
𝑔(𝑤) ⋅ 1vwx{.}(𝑤)

𝜇(𝑝OV{𝑥}) , 

where 𝜇(𝑝OV{𝑥}) is the a priori measure of the fiber.  

 In this special case of a pure mapping that has given rise to the perception 𝑥, we 

can diagram the fiber over x on which this average fitness is computed. This is the shaded 

region in figure 3 below.  

Expected Fitness  

 Given a fitness function 𝑓:𝑊 → [0,∞) that assigns a non-negative fitness value 

to each world state, the expected fitness of a perception 𝑥 is 

𝐹(𝑥) = {𝑓(𝑤)	ℙ(d𝑤	|	𝑥) 	= {𝑓(𝑤)𝑔(𝑤	|	𝑥)	d𝑤 . 
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Two Perceptual Strategies 

 We may build our two perceptual strategies 𝑃}, 𝑃~, called “Truth” and “Fitness-

Only” respectively, as compositions of a “sensory” map 𝑝:𝑊 → 𝑋 that recognizes 

territories and “ordering” maps 𝑑}, 𝑑~: 𝑋 → 𝑋, where 𝑃} = 𝑑} ∘ 𝑝  and 𝑃~ = 𝑑~ ∘ 𝑝. That 

is, the map 𝑑} re-names the elements of X by re-ordering them, so that the best one, in 

terms of its Bayesian MAP estimate, is now the first, 𝑥V, the second best is 𝑥a etc. The 

map 𝑑~, on the other hand, re-orders the elements of X so that the best one, in terms of its 

expected fitness estimate, is 𝑥V, the second best is 𝑥a etc. The organism picks 𝑥V if it can, 

𝑥a otherwise. 

 

The “Fitness Beats Truth” Theorem 

 We can now state our main theorem, which applies in various contexts of 

evolutionary games: with infinite populations, finite populations with full selection, and 

(sufficiently) large finite populations with weak selection. 

Theorem 4: Over all possible fitness functions and a priori measures, the probability that 

the Fitness-only perceptual strategy strictly dominates the Truth strategy is at least 

(|𝑋| − 3)/(|𝑋| − 1), where |𝑋| is the size of the perceptual space. As this size increases, 

this probability becomes arbitrarily close to 1: in the limit, Fitness-only will generically 

strictly dominate Truth, so driving the latter to extinction. 

Proof: For any given 𝑥, the Bayesian MAP estimate is a world point 𝑤. (it is the 𝑤.	such 

that 𝑔(𝑤.	|𝑥) = max{	𝑔(𝑤|𝑥)	|	𝑤 ∈ 𝑊}). This point has fitness 𝑓(𝑤.); let 𝑥� be that 𝑥 



	 																																																																																																									Fitness	Beats	Truth		
	 	 	
	

27	

for which the corresponding 𝑓(𝑤.)	is maximized. Then this 𝑥� is, if available, is chosen 

by Truth and 𝐹(𝑥�), its expected fitness, is the payoff to Truth. 

 On the other hand, the fitness payoff to the Fitness-only strategy is, by definition 

the maximum expected fitness 𝐹(𝑥�) over all fibers, so clearly, 𝐹(𝑥�) ≤ 𝐹(𝑥�).  

 As defined earlier, our evolutionary game has as payoffs, a: to Fitness-only when 

playing against Fitness-only; b: to Fitness-only when playing against Truth; c: to Truth 

when playing against Fitness-only; d: to Truth when playing against Truth. 

 We need to estimate the probability that  and  We assume that if both 

strategies are the same, then each has an even chance of picking its best territory first. 

Thus if, in any given play of the game, two competing strategies both take a particular 

territory as their most favored one, then each strategy has an even chance of picking that 

territory and then the other strategy picks its next-best choice of territory. 

 If Fitness-only meets Fitness-only, then each has an even chance of choosing its 

best territory, say 𝑥�; the second to choose then chooses its second best territory, say 𝑥��. 

Since each player has an equal chance of being first, we have 

𝑎 = [𝐹(𝑥�) + 𝐹(𝑥��)]/2. 

 If Truth meets Fitness-only, its choice will be 𝑥�, as long as this value differs 

from 𝑥�. In this instance, we have 𝑎 > 𝑐. If, however, 𝑥� = 𝑥�, half the time Truth will 

choose 𝑥� and the other half 𝑥�� , where 𝑥�� 	is the second best of the optimal territories 

for Truth. Hence  

!a ≥c !!b ≥d.
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𝑐 = �
𝐹(𝑥�),											if different best territories
𝐹(𝑥�) + 𝐹(𝑥�� )

2 ,	if same best territories
 

and since 𝐹(𝑥�) ≤ 𝐹(𝑥�) and 𝐹(𝑥�� ) ≤ 𝐹(𝑥��) we get  

 What happens when Fitness-only meets Truth? If Fitness-only goes first, the 

payoff will be 𝑏 = 𝐹(𝑥�). The same is true if Truth goes first and the two best territories 

are different. If, however, the two best territories are the same, then the payoff to Fitness-

only is its second-best outcome: 

𝑏 = �𝐹(𝑥�),	if different best territories
𝐹(𝑥��),							if same best territories 

 Finally, when Truth meets Truth, we have that 

𝑑 =
[𝐹(𝑥�) + 𝐹(𝑥�� )]

2 . 

So it is clear that 𝑏 ≥ 𝑑, as long as the two best territories are different. If they are the 

same, this may or may not be true: it depends on the relative size of the average d and 

𝐹(𝑥��) (which, in this instance, also lies in between 𝐹(𝑥�� ) and 𝐹(𝑥�) = 𝐹(𝑥�)). 

 Now, a priori, there is no canonical relation between the functions f and g, both of 

which can be pretty much arbitrary (in fact, f need not even be continuous anywhere, and 

could have big jumps as well as bands of similar value separated from each other in W). 

Also, generically the maximum for each strategy will be unique and also the expected 

fitnesses for the different territories will all be distinct.  

!!a ≥c.
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 Thus, generically, 𝐹(𝑥�) and 𝐹(𝑥�� ) will be different from and indeed strictly 

less than 𝐹(𝑥�) (and also 𝐹(𝑥�� ) < 𝐹(𝑥��)). The only impediment to the domination of 

Fitness-only can come from the situation where the best territories for both strategies are 

the same. Let X have size |𝑋| = 𝑛. There are 𝑛 ways the two strategies can output the 

same territory, out of the	𝑛! [2! (𝑛 − 2)!⁄ ] ways of pairing territories. Thus, across all 

possibilities for f and g, the probability that randomly chosen fitness and a priori 

measures would result in choosing the same territory for both strategies, i.e., that 

𝐹(𝑥�) = 𝐹(𝑥�), will happen with a probability of  

𝑛
𝑛!
2! (𝑛 − 2)!�

=
2

𝑛 − 1 

  Finally, the probability of the two fibers being different is the complement: 1 −

a
�OV

= �Oc
�OV

.   

Dynamic Fitness Functions  

 A possible objection to the applicability of this theorem is that it seems to assume 

a static fitness function, whereas realistic scenarios may involve changing, or even 

rapidly changing, fitness functions. However, a close scrutiny of the proof of the theorem 

reveals that at any moment, the fitness function at that time being the same for both 

strategies, the relative payoffs remain in the same generic relation as at any other moment. 

Hence the theorem also applies to dynamically changing fitness functions. 

 

 

 !
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Discussion 

 As we noted in the Introduction, it is standard in the literature to assume that more 

accurate percepts are fitter percepts and that, therefore, natural selection drives perception 

to increasing veridicality—i.e. to correspond increasingly to the “true” state of the 

objective world. This assumption informs the prevalent view that human percepts are, for 

the most part, veridical.   

 Our main message in this paper has been that, contrary to this prevalent view, 

attempting to estimate the “true” state of the objective world corresponding to a given 

sensory input confers no evolutionary benefit whatsoever. Specifically: If one assumes 

that perception involves inference to states of the objective world, then the FBT Theorem 

shows that a strategy that simply seeks to maximize expected-fitness payoff, with no 

attempt to estimate the “true” world state, does consistently better (in the precise sense 

articulated in the statement of the FBT Theorem). In an evolutionary competition, this 

“fitness” strategy would drive the “truth” strategy to extinction. 

 In our view, the very idea of attempting to estimate the “true” state of the world is 

wrong-headed. Perceptual scientists generally take “objects,” “surfaces,” “light sources,” 

etc. to be part of the objective world that perceptual systems are trying to “recover.” But 

these entities are all still part of our own perceptual interface (Hoffman, Singh & Prakash, 

2015), though perhaps enhanced by precise measurement procedures—which themselves, 

of course, take place within the interface. For the purpose of the current analysis, it was 

important that we place the two strategies to be compared—“Truth” and “Fitness-only”—

within a common framework involving Bayesian inference from the space of sensory 
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states, X, to the objective world, W (recall Figure 3). This allowed us to place the two 

strategies on the same footing, so that they could be placed in direct competition against 

each other. However, the basic FBT result strongly supports the view that the very idea of 

perception as probabilistic inference to states of the objective world is misguided. 

Perception is indeed fruitfully modeled as probabilistic inference, but the inference is 

over a space of perceptual representations, not over a space of objective world states. 

 These ideas are part of larger theory, the Interface Theory of Perception, that we 

have described in detail elsewhere (Hoffman, 2009; Hoffman & Prakash, 2014; Hoffman 

& Singh, 2012; Hoffman, Singh, & Prakash, 2015; see also Koenderink, 2011; 2013; 

2014; von Uexküll, 1934). For the purposes of the current discussion, the key point is that 

the standard Bayesian framework for vision conflates the interpretation space (or the 

space of perceptual hypotheses from which the visual system much choose) with the 

objective world (or, to be more precise, with the space of possible objective-world states). 

This is a mistake; it is essentially the assumption that the language of our perceptual 

representations is the correct language for describing objective reality—rather than 

simply a species-specific interface that has been shaped by natural selection. In our 

framework, the probabilistic inference that results in perceptual experience takes place in 

a space of perceptual representations, say, X1, that may have no homomorphic relation 

whatsoever to W. This extended framework of Computational Evolutionary Perception 

(which incorporates fitness as well) is sketched in Figure 5 (see Hoffman & Singh, 2012; 

Hoffman, Singh, & Prakash, 2015; Singh & Hoffman, 2013).  

  Thus, when we see an object as having a certain 3D shape, it is because the 

probabilistic inference in the relevant perceptual space X1 resulted in that 3D 
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interpretation. But the perceptual space X1 is not the objective world, nor is it 

homomorphic to it. It is simply a representational format that has been crafted by natural 

selection in order to support more effective interactions with the environment (in the 

sense of resulting in higher expected-fitness payoff, and of better predicting the results of 

our actions back in our perceptual space). In other words, a more complex or higher-

dimensional representational format (such as one involving 3D representations in 𝑋V, in 

place of just 2D representations in 𝑋") evolves because it permits a higher-capacity 

channel  for expected fitness (see Figure 5). But this does not in any way 

entail that this representational format somehow more closely “resembles” the objective 

world. Evolution can fashion perceptual systems that are, in this sense, ignorant of the 

objective world because natural selection depends only on fitness and not on seeing the 

“truth.” 

 These considerations strongly undermine the standard assumptions that seeing 

more veridically enhances fitness, and that therefore one can expect that human 

perception is largely veridical. As human observers, we are prone to imputing structure to 

the objective world that is properly part of our own perceptual experience. Our perceived 

world is three-dimensional and populated with objects of various shapes, colors, and 

motions, and so we tend to conclude that the objective world is as well. But if, as the 

Fitness-beats-Truth Theorem shows, evolutionary pressures do not push perception in the 

direction of being increasingly reflective of objective reality, then such imputations have 

no logical basis whatsoever.6 

P1 :W → X1
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 On the narrower question of whether perceptual systems simply pick a single 

interpretation (a point estimate) based on the posterior distribution, or store and use the 

full posterior distribution, a version of this question remains applicable even once we 

drop the idea of making perceptual inferences back in the objective world (and the 

concomitant idea of maximizing “truth”). It is clear that using the full posterior 

distribution allows for greater power and flexibility, e.g. in tailoring the posterior 

distribution to different contexts and task demands that involve different utility functions. 

Indeed, empirical evidence suggests that human observers represent at least the mean and 

variance of posterior distributions, and use this information in a near-optimal manner in 

making perceptual and sensorimotor decisions (e.g. Trommershäuser, Maloney, & Landy, 

2003; Graf, Warren, & Maloney, 2005; Koerding & Wolpert, 2006). According to this 

approach, contexts such as the conscious visual perception of an object (where we 

typically see a single interpretation, rather than a distribution or “smear” of possible 

percepts) result from the application of specific utility functions that collapses the full 

posterior distribution to a single “best” interpretation (e.g. Maloney, 2002; Maloney & 

Mamassian, 2009). Formally treating such cases within the context of ITP would require 

incorporating aspects of Bayesian Decision Theory into our Computational Evolutionary 

Perception framework, something we plan to do in future work.  
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Appendix: Calculations for the numerical example in Table 1 

In this appendix we perform the Bayesian and expected-fitness calculations using the data 

given in Table 1.  

To compute the Truth estimates, we first need the probability of each stimulation ℙ(𝑥V) 

and ℙ(𝑥a). These can be computed by marginalizing over the priors in the world as 

follows:  

ℙ(𝑥V) = 𝑝(𝑥V|𝑤V)𝜇(𝑤V) + p(𝑥V|𝑤a)𝜇(𝑤a) + p(𝑥V|𝑤c)𝜇(𝑤c) =
V
�
. V
�
+ c

�
. c
�
+

V
�
. c
�
= Vc

a�
  

ℙ(𝑥a) = 𝑝(𝑥a|𝑤V)𝜇(𝑤V) + p(𝑥a|𝑤a)𝜇(𝑤a) + p(𝑥a|𝑤c)𝜇(𝑤c) =
c
�
. V
�
+ V

�
. c
�
+



	 																																																																																																									Fitness	Beats	Truth		
	 	 	
	

40	

c
�
. c
�
= V�

a�
  

By Bayes’ Theorem, the posterior probabilities of the world states, given 𝑥V, are   

𝑝(𝑤V|𝑥V) = 𝑝)𝑥V|𝑤V)+.
𝜇(𝑤V)
ℙ(𝑥V)

=
1
4 .
1
7 /

13
28 =

1
13 

𝑝(𝑤a|𝑥V) = 𝑝)𝑥V|𝑤a)+.
𝜇(𝑤a)
ℙ(𝑥V)

=
3
4 .
3
7 /

13
28 =

9
13 

𝑝(𝑤c|𝑥V) = 𝑝)𝑥V|𝑤c)+.
𝜇(𝑤c)
ℙ(𝑥V)

=
1
4 .
3
7 /

13
28 =

3
13 

Thus the maximum a posteriori, or Truth estimate for stimulus 𝑥V is 𝑤a.  

 

Posterior probabilities of the world states, given 𝑠a, are: 

𝑝(𝑤V|𝑥a) = 𝑝)𝑥a|𝑤V)+.
𝜇(𝑤V)
ℙ(𝑥a)

=
3
4 .
1
7 /

15
28 =

1
5 

𝑝(𝑤a|𝑥a) = 𝑝)𝑥a|𝑤a)+.
𝜇(2)
ℙ(𝑥a)

=
1
4 .
3
7 /

15
28 =

1
5 

𝑝(𝑤c|𝑥a) = 𝑝)𝑥a|𝑤c)+.
𝜇(𝑤c)
ℙ(𝑥a)

=
3
4 .
3
7 /

15
28 =

3
5 

Thus the maximum a posteriori, or Truth estimate for stimulus 𝑥a is 𝑤c.  

Finally, the expected-fitness values of the different sensory stimulations 𝑥V and 𝑥a are, 

respectively:  
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𝐹(𝑥V) = 𝑝(𝑤V|𝑥V)𝑓(𝑤V) + 𝑝(𝑤a|𝑥V)𝑓(𝑤a) + 𝑝(𝑤c|𝑥V)𝑓(𝑤c)

=
1
13 . 20 +

9
13 . 4 +

3
13 . 3 = 5; 

  𝐹(𝑥a) = 𝑝(𝑤V|𝑥a)𝑓(𝑤V) + 𝑝(𝑤a|𝑥a)𝑓(𝑤a) + 𝑝(𝑤c|𝑥a)𝑓(𝑤c) =
V
�
. 20 + V

�
. 4 + c

�
. 3 =

6.6.  

Thus 𝑥a has a larger expected fitness than 𝑥V.  
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Footnotes 

 1 From a purely mathematical point of view, the set of monotonic fitness functions 

is an extremely small subset of the set of all functions on a given domain. That is to say, 

there are “many more” non-monotonic functions than monotonic ones; hence a random 

sampling of fitness functions is much more likely to yield a non-monotonic one. 

 2	The	value	of	N	at	which	this	happens	depends	upon	the	payoff	matrix,	but	

can	be	arbitrarily	large	over	the	set	of	all	payoff	matrices	satisfying	𝑎 > 𝑐	and	𝑏 > 𝑑. 

	 3	In	this	case,	all	the	integral	signs	can	be	replaced	by	summations.	

	 4	An	example	is	a	closed	rectangle	in	some	k-dimensional	Euclidean	space,	

such	as	the	unit	interval	[0,	1]	in	one	dimension,	or	the	unit	square	in	two.	

	 5	That	is,	ℙ(d𝑤	|	𝑥) = 𝑔(𝑤|𝑥)d𝑤.	

6	See	also	the	Invention	of	Space-Time	Theorem	in	Hoffman,	Singh,	&	Prakash	

(2015).	
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Tables	

	

	

 

 

Likelihood of 𝑤� 

given  𝑥V 

ℙ(𝑥V*𝑤�+ 

Likelihood of 𝑤� 

given  𝑥a 

ℙ(𝑥a*𝑤�+ 

Prior 

ℙ)𝑤�+ 

Fitness 

𝑓)𝑤�+ 

𝑤V 1/4 3/4 1/7 20 

𝑤a 3/4 1/4 3/7 4 

𝑤c 1/4 3/4 3/7 3 

 

 

Table 1: Likelihood functions, priors and fitness for our simple example where the Truth 

observer minimizes expected fitness, while Fitness-only observer maximizes it. 
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Figure 1.  A simple example showing two different perceptual mappings  

from world states, W = [1, 100] to sensory states X = {R, Y, G, B}. 

 

P :W → X
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Figure 2.  An example of a non-monotonic fitness function 𝑓:𝑊 → [0,∞). Fitness is 

maximal for an intermediate value of the resource quantity and decreases in either 

direction. Given the ubiquitous need for organisms to main homoeostasis, one expects 

that such fitness functions are quite common.  
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Figure 3.  The framework within which we define the two resource strategies. We 

assume a fixed perceptual map  as well as a fixed fitness function 𝑓:𝑊 →

[0,∞). Given a choice of available territories sensed through the sensory states, say x1, 

x2,…, xn, the organism’s goal is to pick one of these, seeking to maximize its fitness 

payoff. Note that the "Fitness only" strategy employs Bayesian estimation while rejecting 

the interpretative assumptions usually associated with it. 

  

P :W → X
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Figure 4.  The expected fitness of 𝑥 is the average, using the posterior probability, over 

the fiber 𝑝OV(𝑥). 
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Figure 5.  The framework of Computational Evolutionary Perception in which perceptual 

inferences take place in a space of representations X1 that is not isomorphic or 

homomorphic to W.  The more complex representational format of X1 evolves because it 

permits a higher-capacity channel  for expected fitness, thereby allowing the 

organism to choose and act more effectively in the environment (i.e. in ways that result in 

higher expected-fitness payoffs). 

 

P1 :W → X1


