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Parts	and	Wholes	
Donald	D.	Hoffman	

	
	

Vision	starts	with	a	shower	of	photons	focused	by	the	lens	of	the	eye	onto	the	retina.	Each	retina	has	

roughly	125	million	photoreceptors,	and	each	photoreceptor	signals	roughly	in	proportion	to	the	

number	of	photons	it	catches	(Alexiades	&	Khanal,	2007).	One	can	think	of	the	photoreceptor	mosaic	

as	reporting	125	million	numbers,	one	for	the	quantity	of	photons	caught	at	each	photoreceptor.	This	

massive	array	of	numbers	is	the	starting	point	of	vision.	It	has	no	objects,	shapes,	parts,	colors,	

textures	or	motions.	The	objects	we	see,	and	all	their	visual	properties,	must	be	constructed	by	the	

visual	system	out	of	this	bewildering	torrent	of	numbers.	In	particular,	the	parts	and	wholes	of	visual	

objects	are	not	given,	they	must	be	constructed.	

	 This	constructive	process	has	been	shaped	by	natural	selection	to	guide	adaptive	behavior	in	

our	niche.	Aeons	of	random	mutations,	together	with	the	culling	of	mutations	that	are	less	fit,	have	

led	to	the	constructive	processes	that	create	the	parts	and	wholes	of	objects	that	we	see	today.	This	

raises	the	question:	Can	we	characterize,	with	mathematical	precision,	the	process	by	which	parts	

and	wholes	are	constructed?	

	 We	construct	the	visual	world	to	have	three	spatial	dimensions,	and	we	construct	whole	

objects	to	be	compact	regions	within	that	three-dimensional	(3D)	space,	each	object	typically	having	

a	well-defined	two-dimensional	(2D)	surface	that	bounds	its	compact	region.	

	 Most	objects	are	not	undifferentiated	wholes,	but	instead	are	seen	as	having	a	natural	

decomposition	into	parts.	Several	mathematically	precise	rules	can	account	for	the	parts	we	see	in	

many	objects.	Here	we	explore	the	minima	rule,	the	short-cut	rule,	and	part	salience	rules.	We	begin	

with	the	minima	rule	(Hoffman	&	Richards,	1984).	

	

Minima	Rule:	Divide	3D	shapes	into	parts	along	concave	cusps	and	along	negative	minima	of	the	

principal	curvatures,	along	their	associated	lines	of	curvature.	
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An	example	of	the	part	boundaries	defined	by	this	rule	is	given	in	Figure	1.	In	(a),	when	the	three	

dots	appear	to	lie	on	the	faces	of	a	single	cube,	then	the	lines	that	bound	that	cube	are	concave	cusps,	

and	therefore	are	part	boundaries	according	to	the	minima	rule.	In	(b)	the	circular	dashed	contours	

are	negative	minima	of	the	principal	curvatures	along	their	associated	lines	of	curvature,	and	are	

therefore	part	boundaries	according	to	the	minima	rule.	

	

	

Figure	1.	Illustration	of	part	boundaries	defined	by	the	minima	rule.	(a)	Part	boundaries	defined	by	

concave	cusps.	(b)	Part	boundaries	defined	by	negative	minima	of	the	principal	curvatures	along	

their	associated	lines	of	curvature.	

	

	 To	understand	the	statement	of	the	minima	rule,	recall	that	most	2D	surfaces	embedded	in	

3D	space	are	orientable,	i.e.,	they	admit	two	distinct	fields	of	surface	normals.	An	exception	are	

unusual	surfaces	such	as	the	Moebius	strip	or	Klein	bottle.	For	many	orientable	surfaces,	human	

vision	assigns	one	side	of	the	surface	to	be	“figure,”	i.e.,	the	object,	and	the	other	side	to	be	“ground,”	

i.e.,	the	space	around	the	object	(Rubin,	1915/1958).	We	adopt	the	convention	that	surface	normals	

point	towards	the	figure	side	of	the	surface.		

With	this	convention,	concave	cusps	point	toward	the	figure	side	of	the	surface,	and	convex	to	its	

ground	side.	The	concave	cusps	are	part	boundaries	according	to	the	minima	rule.	If	human	vision	

reverses	figure	and	ground,	then	concave	and	convex	cusps	reverse	roles	and,	according	to	the	

minima	rule,	new	part	boundaries	should	be	seen.	This	can	be	checked	in	Figure	1(a).	At	first	the	
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three	dots	appear	to	be	on	single	cube,	and	the	concave	cusps	around	that	cube	are	its	part	

boundaries.	But	after	viewing	the	image	for	a	while,	figure	and	ground	will	appear	to	reverse	and	the	

three	dots	will	suddenly	appear	to	lie	on	three	different	cubes.	These	new	cubes	are	defined	by	new	

concave	cusps	that	used	to	be	convex	cusps	when	the	three	dots	were	seen	to	be	on	a	single	cube.	

	 Recall	that	at	every	smooth	point	of	a	2D	surface	embedded	in	3D	space,	there	are	two	

“principal	directions,”	one	direction	in	which	the	surface	curves	most,	and	an	orthogonal	direction	in	

which	the	surface	curves	least	(do	Carmo,	1976).	Lines	of	greatest	curvature	are	curves	on	the	

surface	whose	tangents	always	points	in	a	direction	of	greatest	curvature;	lines	of	least	curvature	are	

curves	whose	tangents	always	points	in	a	direction	of	least	curvature.	In	Figure	1(b)	the	cosine-like	

curves	radiated	from	the	center	are	lines	of	curvature.	If	we	adopt	the	convention	that	curvature	is	

negative	for	regions	of	curves	on	the	surface	that	are	concave,	and	positive	for	regions	that	are	

convex,	then	the	negative	minima	of	curvature	along	lines	of	curvature	are	indicated	by	the	dashed	

circular	contours	in	Figure	1	(b).	These	are	the	part	boundaries	defined	by	the	minima	rule.	One	sees	

parts	that	look	like	hills	divided	from	each	other	by	these	dashed	circular	contours,	in	accord	with	

the	minima	rule.	If	one	turns	the	page	upside	down,	then	figure	and	ground	will	appear	to	reverse,	

and	the	dashed	circular	contours	will	no	longer	be	negative	minima	of	curvature.	Instead	they	are	

positive	maxima	of	curvature,	and	appear	to	lie	on	top	of	a	new	set	of	hills	that	are	defined	by	the	

new	negative	minima	of	curvature.	

	 The	minima	rule	for	part	boundaries	on	the	surfaces	of	3D	objects	leads	naturally	to	a	

minima	rule	for	part	boundaries	of	silhouettes	(Hoffman	&	Richards.	1984).	

	

Minima	rule	for	silhouettes.	Divide	each	silhouette	into	parts	at	concave	cusps	and	negative	

minima	of	its	bounding	contour.	

	

	 This	rule	is	illustrated	by	the	well-known	face-goblet	illusion	shown	in	Figure	2	(a).	It	

sometimes	appears	to	be	a	single	goblet.	But	at	other	times,	due	to	a	figure-ground	reversal,	it	

appears	to	be	two	faces.	In	Figure	2	(b)	are	shown	the	two	sets	of	part	boundaries	defined	by	the	

minima	rule	for	silhouettes.	If	the	bowl	is	seen	as	the	figure,	then	the	part	boundaries	are	at	the	
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points	indicated	by	the	short	line	segments	on	the	left	side	of	the	drawing.	These	part	boundaries	

divide	the	silhouette	into	parts	that	correspond	to	the	lip,	bowl,	stem	and	base	of	the	goblet.	If	the	

faces	are	seen	as	the	figure,	then	the	regions	of	positive	curvature	become	regions	of	negative	

curvature,	and	vice	versa.	Therefore	the	parts	defined	by	the	minima	rule	for	silhouettes	change.	The	

new	part	boundaries	are	at	the	points	indicated	by	the	short	line	segments	on	the	right	side	of	the	

drawing.	These	part	boundaries	divide	the	silhouette	into	parts	that	correspond	to	the	forehead,	

nose,	lips	and	chin	of	the	faces.	Notice	that	the	parts	defined	by	the	minima	rule	correspond	to	

regions	of	the	shape	that	have	single	word	labels.	For	instance,	if	the	goblet	is	figure,	then	one	part	

defined	by	the	minima	rule	is	called	the	bowl.	This	same	region,	if	the	face	is	figure,	would	require	a	

more	complicated	phrase	to	describe	it,	such	as	“lower	half	of	the	forehead	and	upper	half	of	the	

nose.”	This	suggests	that	the	parts	defined	by	the	minima	rule	are	natural	units	of	the	visual	

representation	of	shape,	and	are	among	the	units	that	are	named	by	subsequent	linguistic	processing	

in	the	brain.	

	

Figure	2.	The	minima	rule	for	silhouettes,	illustrated	on	the	face	goblet	illusion.	(a)	The	face-goblet	

illusion.	(b)	The	two	sets	of	part	boundaries	defined	by	the	minima	rule	for	silhouettes,	one	for	the	

faces	seen	as	figure	and	the	other	for	the	goblet	seen	as	figure.	

	

	 The	minima	rule	defines	part	boundaries,	but	in	some	cases	does	not	define	a	unique	part	

cut.	For	instance,	Figure	3	(a)	shows	a	shape	with	the	part	boundaries	defined	by	the	minima	rule	for	
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silhouettes.	However	these	part	boundaries	could	in	principle	be	joined	by	a	part	cut	either	as	shown	

in	Figure	3	(b)	or	(c).	Experiments	by	Singh,	Seyranian	and	Hoffman	(1999)	demonstrate	human	

vision	prefers	cuts	that	are	shorter.	This	“short-cut	rule”	leads	the	visual	system	to	prefer	the	cut	in	

(c)	over	the	cut	in	(b).		

	

Figure	3.	An	illustration	of	the	short-cut	rule.	(a)	A	silhouette	with	part	boundaries	defined	by	the	

minima	rule	for	silhouettes.	(b)	Part	cuts	that	are	not	preferred	by	the	short-cut	rule.	(c)	Part	cuts	

that	are	preferred	by	the	short-cut	rule.	

	

	 Part	boundaries	defined	by	the	minima	rule	can	vary	in	their	perceptual	salience	(Hoffman	&	

Singh,	1997).	In	Figure	4	(a)	there	are	two	part	boundaries,	one	at	the	sharp	concave	cusp	in	the	

middle	of	the	shape,	and	one	at	the	concave	cusp	directly	below	it.		The	angle	of	the	top	boundary	is	

more	acute	than	that	of	the	lower	boundary,	and	this	makes	it	perceptually	more	salient.	In	Figure	4	

(b)	there	are	again	two	part	boundaries,	one	with	high	magnitude	of	curvature,	and	one	directly	

below	it	with	lower	magnitude	of	curvature.	The	boundary	with	higher	magnitude	of	curvature	is	

perceptually	more	salient.	Because	curvature	is	not	a	scale	invariant	quantity,	curvatures	at	

boundaries	must	be	normalized	in	a	canonical	fashion	before	their	salience	is	compared	(see	

Hoffman	&	Singh,	1997,	for	technical	details).	
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Figure	4.	Salience	of	part	boundaries.	(a)	The	concave	cusp	on	top	has	a	more	acute	angle	than	the	

concave	cusp	directly	below	it,	and	is	therefore	more	salient.	(b)	The	negative	minima	boundary	on	

top	has	greater	(normalized)	curvature	than	the	one	directly	below	it,	and	therefore	is	more	salient.	

	

The	salience	of	a	part	boundary	influences	the	perception	of	figure	and	ground	(Hoffman	&	

Singh,	1997).	In	Figure	5(a)	the	standard	face-goblet	illusion	has	been	altered	so	that	the	part	

boundaries	associated	with	the	goblet	are	more	salient.	In	Figure	5	(b)	the	part	boundaries	

associated	with	the	faces	are	more	salient.	When	subjects	were	shown	these	images	for	250	ms,	they	

were	about	3	times	as	likely	to	see	Figure	5	(a)	as	a	goblet	than	Figure	5	(b).	

	

	Figure	5.	Salience	of	part	boundaries	affects	perception	of	figure	and	ground.	In	(a)	the	boundaries	

associated	with	the	goblet	are	more	salient,	and	in	(b)	the	boundaries	associated	with	the	faces	are	

more	salient.	Human	subjects	are	more	likely	to	see	(a)	as	being	a	goblet	and	(b)	as	being	two	faces.	

	



	 7	

	 The	salience	of	a	part	is	influenced	by	the	salience	of	its	boundaries	(Hoffman	&	Singh,	

1997).	It	is	also	influenced	by	the	protrusion	of	the	part—which	is	roughly	how	far	the	part	sticks	

out—and	by	the	volume	of	the	part	relative	to	the	volume	of	the	whole	object.	These	informal	

descriptions	can	be	given	precise	geometric	definitions	(Hoffman	&	Singh,	1997).	

	 If	parts	defined	by	the	minima	rule	correspond	to	natural	units	of	the	visual	representation	

of	shape,	then	one	would	expect	that	such	parts	would	affect	judgments	of	shape	similarity.	In	Figure	

6,	which	of	the	two	half	moons	on	the	right	looks	most	similar	to	the	single	half	moon	on	the	left?	In	a	

controlled	experiment,	subjects	found	the	half	moon	on	the	bottom	to	be	more	similar	(Hoffman	

1983a,	1983b).	Note	that	the	bounding	curve	of	the	half	moon	on	top	is	point-for-point	identical	to	

the	half	moon	on	the	left.	Indeed,	they	fit	like	puzzle	pieces.	The	half	moon	on	the	bottom	has	been	

figure-ground	reversed	from	the	half	moon	on	the	left,	and	the	position	of	two	parts	has	been	

switched.	If	our	visual	judgments	of	shape	similarity	were	based	on	a	point-for-point	comparison,	

then	the	half	moon	on	the	top	would	be	judged	more	similar.	However,	human	vision	appears	to	

judge	shape	similarity	part	by	part,	rather	than	point	by	point.	

	

	

Figure	6.	A	demonstration	that	minima	parts	influence	judgments	of	shape	similarity.		
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	 Our	perceptions	of	symmetry	and	repetition	provide	another	demonstration	that	human	

vision	analyzes	shapes	part	by	part	rather	than	point	by	point.	Mach	(1885)	noted	that	it	is	often	

easier	to	detect	symmetry	in	a	shape	than	to	detect	repetition.	For	instance,	in	Figure	7	the	repetition	

in	(a)	is	difficult	to	detect	whereas	the	symmetry	in	(b)	is	easy	to	detect.	What	is	surprising	about	this	

from	a	mathematical	point	of	view	is	that	symmetry	involves	repetition	plus	mirror	reversal.		So	the	

number	of	mathematical	transformations	required	to	create	symmetry	is	more	than	that	required	to	

create	repetition.		

	

	

Figure	7.	Detecting	symmetry	and	repetition.	In	(a)	the	repetition	is	difficult	to	detect.	In	(b)	the	

symmetry	is	easy	to	detect.	

	

	 Baylis	and	Driver	(1994,	1995a,	1995b)	found	that	repetition	can	be	made	more	easy	to	

detect	than	symmetry	if	one	reverses	figure	and	ground.	For	instance,	in	Figure	8	the	symmetry	in	(a)	

is	not	easily	detected	whereas	in	(b)	the	repetition	is	easily	detected.	The	difference	between	Figure	

8	and	7	is	how	figure	and	ground	are	seen	across	the	curves.	In	Figure	7	the	perception	of	figure	and	

ground	makes	the	two	sides	of	the	symmetric	figure	have	the	same	minima-rule	parts	(mirror	

reversed),	making	symmetry	easier	to	detect.	In	Figure	8	the	perception	of	figure	and	ground	makes	

the	two	sides	of	the	repetition	figure	have	the	same	minima-rule	parts,	making	repetition	easier	to	

detect.		
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Figure	8.	Symmetry	and	repetition	revisited.	In	(a)	the	symmetry	is	not	easily	detected	and	in	(b)	the	

repetition	is	easily	detected.	

	

Part	boundaries	defined	by	the	minima	rule	for	silhouettes	appear	to	be	computed	quickly	

and	early	in	the	stream	of	visual	processing.	Figure	9	illustrates	this	with	a	display	similar	to	that	

used	by	Hulleman,	te	Winkel	&	Boselie	(2000).	In	Figure	9	(a)	the	object	with	a	part	boundary	pops	

out	among	convex	distracters.	In	Figure	9	(b)	the	convex	object	does	not	pop	out	among	objects	with	

part	boundaries.	Visual	search	experiments	by	Xu	and	Singh	(2002)	indicate	that	parsing	objects	at	

negative	minima	of	curvature	occurs	obligatorily.	
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Figure	9.	Demonstration	similar	to	stimuli	from	Hulleman	et	al.	(2000)	showing	that	part	boundaries	

are	computed	quickly	and	early	in	visual	processing.	In	(a)	the	object	with	a	part	boundary	pops	out.	

In	(b)	the	convex	object	does	not	pop	out.	

	

	 Parts	defined	by	the	minima	rule	affect	the	perception	of	transparency	(Singh	&	Hoffman,	

1998).	Figure	10	(a)	shows	a	standard	example	of	transparency.	In	Figure	10	(b)	minima	part	

boundaries	have	been	added	at	precisely	the	location	where	luminance	changes,	and	this	results	in	a	

greatly	reduced	perception	of	transparency.	If	the	part	boundary	is	not	aligned	with	the	luminance	

change,	as	in	Figure	10	(c),	then	the	perception	of	transparency	returns.	The	loss	of	transparency	in	

Figure	10	(b)	appears	to	have	two	contributions,	one	due	to	parts	and	one	due	to	genericity.	Different	

parts	can	have	different	properties,	and	the	visual	system	is	therefore	inclined	to	attribute	the	change	

in	luminance	in	Figure	10	(b)	to	a	difference	in	part	properties	rather	than	to	transparency.	If	the	

cusps	in	Figure	10	(b)	are	made	convex	rather	than	concave,	there	is	again	a	reduction	in	perceived	

transparency,	but	not	as	much	as	for	the	part	boundaries.	This	indicates	that	the	nongeneric	

alignment	of	cusps	(concave	or	convex)	also	inclines	the	visual	system	to	reject	transparency.	

	

Figure	10.		Minima	part	boundaries	and	perceived	transparency.	The	transparency	seen	in	(a)	

disappears	in	(b)	where	a	part	boundary	aligns	with	the	luminance	change.	Transparency	is	seen	

again	in	(c)	where	the	part	boundary	is	not	aligned	with	the	luminance	change.	
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	 Parts	defined	by	the	minima	rule	affect	recognition	memory.	Braunstein,	Hoffman	

and	Saidpour	(1989)	showed	surfaces	of	revolution	to	human	observers.	After	each	surface	

was	presented,	observers	were	shown	four	separate	parts	and	had	to	choose	which	part	

was	in	the	surface	just	seen.	Two	of	the	parts	were	distracters,	but	two	were	actual	parts	of	

the	surface,	one	defined	by	negative	minima	of	curvature	and	one	defined	by	positive	

maxima	of	curvature.	Observers	were	twice	as	likely	to	choose	the	minima	part	rather	than	

the	maxima	part,	suggesting	that	these	parts	are	natural	units	for	recognition	memory.	

	 Minima	parts	affect	visual	attention.	Singh	and	Scholl	found	that	attention	can	shift	

more	quickly	within	a	part	than	across	parts,	and	that	greater	salience	of	a	part	boundary	

makes	the	shift	across	parts	even	slower	(Scholl,	2000;	Singh	and	Scholl,	2000).	

	

Figure	11.	Transversal	intersection	and	concave	cusp.		

	

Why	does	the	visual	system	use	concave	cusps	and	negative	minima	of	curvature	to	

define	part	boundaries?	Consider	two	separate	objects,	as	shown	on	the	left	in	Figure	11.	If	

those	two	objects	are	joined	to	form	a	single	object,	as	shown	on	the	right	in	Figure	11,	then	

the	two	original	objects	are	good	candidates	for	natural	parts	of	the	new	object.	In	the	
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generic	case,	the	two	objects	intersect	transversally	(Guillemin	&	Pollack,	1974),	leading	to	the	

concave	cusp	indicated	by	dashed	contours.	If	this	cusp	is	smoothed,	it	leaves	a	negative	

minimum	of	curvature.	Thus	genericity	and	transversality	appear	to	be	the	mathematical	

principals	underlying	the	minima	rule.	

	 It	remains	an	open	problem	to	precisely	characterize	all	the	qualitatively	different	

kinds	of	parts	that	can	result	from	applying	the	minima	and	short-cut	rules	to	3D	shapes.	

Prior	theories	of	shape	perception	have	used	various	primitive	shapes	as	parts,	including		

polyhedra	(Roberts,	1965;	Waltz,	1975;	Winston,	1975),	generalized	cones	and	cylinders	(Binford,	

1971;	Brooks,	1981;	Marr	and	Nishihara,	1978),	superquadrics	(Pentland,	1986)	and	geons	

(Biederman,	1987).	Although	there	is	substantial	evidence	for	the	importance	of	parts	in	the	visual	

perception	of	shapes,	there	is	no	experimental	evidence	that	any	of	these	particular	primitives	play	a	

role	in	the	human	visual	perception	of	parts.	The	set	of	geons,	for	instance,	is	too	restrictive.	Geons	

can	have	truncated	or	pointed	tips,	but	cannot	have	rounded	tips,	even	though	the	distinction	

between	rounded,	pointed	and	truncated	tips	is	a	nonaccidental	property	(Binford,	1981;	Lowe,	

1987;	Witkin	&	Tenenbaum,	1983)	that	survives	projection	and	is	easily	seen	by	human	vision.	No	

geon	can	have	a	cross	section	that	changes	shape	as	it	sweeps	along	the	geon’s	axis,	but	such	

changing	cross	sections	pose	no	problem	for	human	vision.	

	 In	summary,	human	vision	appears	to	decompose	shapes	into	parts	using	the	minima	and	

short-cut	rules,	both	for	3D	shapes	and	for	2D	silhouettes.	The	resulting	parts	appear	to	be	computed	

quickly	and	early	in	visual	processing,	to	affect	our	perceptions	of	shape	similarity,	to	influence	our	

recognition	memory	for	shapes,	to	interact	with	our	perceptions	of	symmetry	and	repetition,	to	alter	

our	perceptions	of	transparency,	and	to	influence	our	deployment	of	visual	attention.	Parts	are	a	

powerful	component	in	the	analysis	and	representation	of	visual	shapes.	
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