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Abstract 

What visual textures do people like and why? Here we test whether Palmer and Schloss’ (2010) 

ecological valence theory can predict people’s preferences for visual texture. According to the 

theory, people should like visual textures associated with positive objects or entities and dislike 

visual textures associated with negative objects or entities. We compare the results for the 

ecological model to a more traditional texture-preference model based on computational features 

– namely, the model of Thumfart et al. (2011) – and find that the ecological model performs 

reasonably well considering its lower complexity, explaining 63% of the variance in the human 

preference data.  

Keywords: visual texture, aesthetic preference, ecological valence theory 



Running head: TEXTURE PREFERENCE  3 

 

On visual texture preference: Can an ecological model explain why people like some textures 

more than others?  

Introduction 

For members of the species H. sapiens, textures are ubiquitous. Every day we are 

surrounded by objects and surfaces that give us unique feelings when we touch them – fur feels 

soft, tree bark feels rough, and silk feels smooth. These different feelings arise from variations on 

the surfaces of objects which also lead to variations in the pattern of light that reaches our eyes – 

fur looks soft, tree bark looks rough, and silk looks smooth. We call this visual aspect of surface 

variation visual texture
1
. Artists and designers have long used visual texture as a tool to evoke 

emotions and set moods (see, e.g., Brodatz, 1966; Gatto, Porter, & Selleck, 1999). In the current 

paper, we investigate the aesthetics of visual texture more formally by empirically exploring the 

question: What visual textures do people like and why? We examine whether the ecological 

valence theory proposed by Palmer and Schloss (2010) for color preferences – and later extended 

to odor preferences (Schloss, Goldberger, Palmer, & Levitan, 2015) – can also be used to explain 

preferences for visual texture. But, first we review previous work on visual texture and the 

aesthetics of images.  

There are many models that predict perceptual properties of visual textures. For example, 

there are models that predict how rough (Ho, Landy, & Maloney, 2006; Tamura, Mori, & 

Yamawaki, 1978), glossy (Anderson & Kim, 2009; Kim & Anderson, 2010; Montoyishi, 

Nishida, Sharan, & Adelson, 2007), or complex (Amadasun & King, 1989; Tamura et al., 1978) 

                                                 
1
 More formally, if we think of an image as a 2-D array of pixels and we think of each pixel as a realization of a 

random variable on intensity, then visual textures are those images that have variation in pixel intensity at the limit 

of resolution but whose spatial covariance is relatively homogenous (i.e., moving a small window around the image 

does not significantly alter the statistics within the window; Haindl & Filip, 2013; Julesz, 1962; Portilla & 

Simoncelli, 2000), although other constraints are often employed and precise definitions vary by application (Haindl 

& Filip, 2013; Sebe & Lew, 2001; Tuceryan & Jain, 1998).  Also note that visual texture can arise from variations 

that are not tactile (e.g., a birch table looks different from a mahogany table but they might feel identical). 
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they look, as well as how they are segmented (Ben-Shahar, 2006; Julesz, 1962, 1981; Landy & 

Bergen, 1991; Malik & Perona, 1990; Portilla & Simoncelli, 2000; Rosenholtz, 2000; Tyler, 

2004; Victor, 1988) or classified (e.g., Dong, Tao, Li, Ma, & Pu, 2015; Guo, Zhang, & Zhang, 

2010; Haralik, Shanmugam, & Dinstein, 1973; Randen & Husy, 1999; Varma & Zisserman, 

2005) by human observers (for reviews, see Bergen, 1991; Landy & Graham, 2004; Rosenholtz, 

2015).  

There are also many models that predict aesthetics of images, including how much 

observers like the images (e.g., Chen, Sobue, & Huang, 2008; Kawamoto & Soen, 1993; S. Kim, 

E. Kim, Jeong, & J. Kim, 2006; Lee & Park, 2011; Um, Eum & Lee, 2002; Zhang et al., 2011; 

for reviews, see Joshi et al., 2011; Palmer, Schloss, & Sammartino, 2013). But these models are 

typically applications-focused – they were not designed to predict preferences for visual textures 

generally, nor do they necessarily extend well to the general space of visual textures (Thumfart et 

al., 2011).   

There is, however, an extant model that predicts preferences for visual textures 

specifically, the architecture for which has been proposed by two different research groups.  

Current Computational Model of Visual Texture Aesthetics 

Thumfart et al. (2011) and Liu, Lughofer, and Zeng (2015) have both recently published 

a parametric model that predicts human ratings on several aesthetic properties
2
 for visual textures 

(Figure 1). Given a visual texture, this model makes predictions using a combination of low-level 

computational features measured from that texture and human ratings on other aesthetic 

properties for that texture. For instance, Thumfart et al. found that how “elegant” a texture looks 

was best-predicted by a combination of eight computational features measured from that texture 

                                                 
2
 “Aesthetic properties” are operationalized as antonym pairs such as Warm-Cold, Hard-Soft, or Artificial-Natural. 

Thus, preference is defined by the antonym pair Dislike-Like.  
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(top three: the response energy of a particular oriented Gabor filter applied to the image, the 

contribution of blue to the image color, and the mean variance of image intensities) and human 

ratings on four other aesthetic properties for that texture (ratings of how “glossy,” “silky,”  

“woodlike,” and “grainy” it looks). In general, the computational features are derived from well-

known image-processing features – like the Fourier power spectrum of an image or the gay-level 

co-occurrence matrix for an image – and the aesthetic properties include primary/physical 

descriptions (e.g., Cold-Warm, Rough-Smooth), more abstract descriptions (e.g., Simple-

Complex, Inelegant-Elegant), and preference (Dislike-Like).  

This model is hierarchical in that some aesthetic properties are predicted using only 

computational features, whereas others are predicted using a combination of computational 

features and other aesthetic properties (see Figure 1). Both Thumfart et al. and Liu et al. consider 

preference (i.e., ratings of Dislike-Like) to be the highest-level aesthetic property and thus their 

models predict preference using both computational features and human ratings on all other 

aesthetic properties.
3
 For instance, Thumfart et al. predicted preference using linear regression 

with 214 potential regressors: 188 computational features and ratings for 26 other aesthetic 

properties (see Figure 1).  

                                                 
3
 Because of the hierarchical feed-forward nature of these models, preference predictions could eventually be 

reduced to only computational features. For example, if ratings of Cold-Warm turned out to be important for 

predicting preference, then, in future iterations of the model, human ratings of Cold-Warm could be replaced by 

measurements of the computational features that best predict ratings of Cold-Warm (see Figure 1). 
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Figure 1. Structure of the hierarchical feed-forward model of texture aesthetics used by Thumfart 

et al. (2011) and Liu et al. (2015) (adapted from Thumfart et al.’s representation of the model). 

The model predicts human ratings of aesthetic properties using measurements of computational 

features and ratings of other aesthetic properties. In the current paper, we are interested in 

preference, or Dislike-Like.  

 

This model has been able to predict human preference (i.e., Dislike-Like) for visual 

texture with high accuracy (in Liu et al.’s instantiation of the model, they claim to account for as 

much as 99% of the variance in human preference ratings). However, the model employs a “see 

what sticks” approach which emphasizes model prediction over model understanding. The 

numerous features and aesthetic properties constitute a veritable grab-bag from the literature on 

computer vison, image processing and aesthetics. But, to the credit of Thumfart et al. and Liu et 

al., their models are more interpretable than black-box models such as neural networks, and 

Thumfart et al. increased interpretability by using an optimization measure that punishes 

complexity (defined by number of regression terms).  
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Still, these models were not constrained by any overarching theory dictating which 

features should be included and which should not, and it’s unclear why certain features are so 

important for predicting preference while others are not. For instance, Thumfart et al. found that 

how “premium”, “sophisticated” and “woodlike” a texture looks were all important for 

predicting how much someone likes that texture, whereas how “elegant” and “natural” it looks 

were not. Likewise, they found that the skewness of the energy contained in 12 circular ring 

segments of the Fourier power spectrum of a texture was important for predicting how much 

someone likes that texture, whereas the kurtosis or standard deviation of the energy contained in 

those same 12 ring segments was not (see Table 1).  While these results are interesting and 

useful, they are not theoretically motivated and would not have been predicted by any current 

theory.  

In other words, this model is good at predicting what visual textures people like, but does 

not give the best sense of why.  

Ecological Valence Theory 

In contrast to the “see what sticks” computational model described above, Palmer and 

Schloss’ (2010) ecological valence theory (EVT) is based on a simple premise: People’s 

preferences for basic stimuli (e.g., colors, odors) are derived from how they feel about the 

objects or entities associated with those stimuli (note that the theory was initially only proposed 

for colors and only later extended to other types of stimuli/modalities). So, for example, a student 

might have a particular affinity for the color blue because they like blueberries and/or attend the 

University of California, Irvine (whose official color is blue), whereas another student might 

have an affinity for the color red because they like cherries and/or attend the University of 

Southern California (whose official color is red). Indeed, there is evidence that people like the 
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colors of their own social group more than members of a rival social group (Schloss & Palmer, 

2014; Schloss, Poggesi & Palmer, 2011).  

But, Palmer and Schloss take this basic premise a step further and claim that people’s 

preferences are dictated by a summary statistic that accounts for the valence across all objects 

associated with a particular stimulus.  That is, how much a person might like a given stimulus 

can be explained by how positive or negative people feel, on average, about all objects and 

entities associated with that stimulus. The motivation for this reasoning is evolutionary: 

Assuming that people have positive feelings about objects that lead to beneficial outcomes, then 

stimuli that are typically associated with those objects serve as indicators to the beneficial 

outcomes. Thus, such preferences should steer organisms to approach objects that lead to 

beneficial outcomes and avoid those that lead to harmful outcomes, an evolutionarily 

advantageous strategy (Palmer & Schloss, 2010; Schloss et al., 2015). This is the ecological 

valence theory.  

Palmer, Schloss and colleagues have already found support for this theory for colors and 

odors: Average color preferences are well predicted by how people feel about all objects 

associated with the colors (Palmer & Schloss, 2010; Taylor & Franklin, 2012), and average odor 

preferences are well predicted by how people feel about all objects associated with the odors 

(Schloss et al., 2015). Furthermore, the theory predicts that preferences across cultures or social 

groups should vary only to the degree that these groups associate different objects with the same 

stimuli or have different feelings about the same objects, and there is empirical support that this 

is the case with colors (Schloss, Hawthorne-Madell, & Palmer,  in press; Yokosawa, Yano, 

Schloss, Prado-Leon, & Palmer, 2010).   
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Thus far, Palmer, Schloss and colleagues have only tested the ecological valence theory 

with colors and odors, but the theory should be generally applicable to different kinds of stimuli 

in any modality (see, e.g., Schloss et al., 2015). The goal of the present research was to test how 

well the ecological valence theory accounts for preferences for visual texture: Can people’s 

average preferences for visual textures be predicted by how positive or negative they feel about 

all objects associated with the textures?  

Present Study 

Testing the ecological valence hypothesis. To test whether preference for a given visual 

texture can be predicted by the average valence for all objects or entities associated with that 

visual texture, we adapted the procedure of Palmer and Schloss (2010) to visual textures. This 

procedure required data from four different groups of participants.  

The first group gave the to-be-predicted preference ratings. These participants were 

simply asked to rate how much they liked each visual texture on a line-mark ratings scale coded 

from −100 (dislike) to +100 (like).  

The next three groups of participants were needed to calculate the predicted preference
4
 

for each texture: one group typed out descriptions of objects they associated with each visual 

texture (the object-description group); another group rated their emotional response 

(positive/negative) to a condensed set of these object descriptions (the description-valence 

group); and the final group rated how well each visual texture matched all of the descriptions 

ascribed to that texture (the texture-description match group). The prediction for any given visual 

texture was then given by the sum of the average valence ratings for each object associated with 

the texture, weighted by how well those objects match the texture:  

                                                 
4
 Palmer and Schloss (2010) and Schloss et al. (2015) refer to their preference predictions as weighted affective 

valence estimates, or WAVEs.  
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𝑃𝑡 =
1

𝑛𝑡
∑ 𝑤𝑡𝑑𝑣𝑑

𝑑∈𝐷𝑡 

 (1) 

where, 𝑃𝑡 is the predicted preference for texture 𝑡 (−100 to 100), 𝑛𝑡 is the number of 

descriptions ascribed to texture 𝑡, 𝐷𝑡 is the set of all descriptions ascribed to texture 𝑡,  𝑤𝑡𝑑 is the 

average match weighting between texture 𝑡 and description 𝑑 (0 to 1), and 𝑣𝑑 is the average 

valence rating for description 𝑑  (−100 to 100). Using this formulation, Palmer and Schloss 

(2010) accounted for 80% of the variance in average color preferences, and Schloss et al. (2015) 

account for 76% of the variance in average odor preferences.  

Testing other hypotheses. One might (reasonably) question whether applying this 

formulation to visual textures is sensible. After all, isn’t it generally obvious what object a 

(natural) visual texture corresponds to? In this case, preference for a visual texture would reduce 

to how people feel about the single associated object, an uninteresting result. Schloss et al. 

(2015) faced a similar problem when applying the ecological valence theory to odors, since they 

used odor pens that were designed to smell like a particular object (e.g., honey, apple, leather). 

But, they found that the associated objects were more ambiguous than one would think and that 

odor preference was better explained by the valence for all objects associated with the odor pens, 

rather than just the object the pen was designed to smell like. We hypothesized a similar outcome 

for visual textures.  

To test this outcome, we examined two additional hypotheses (following Schloss et al., 

2015): the single-associate hypothesis and the namesake hypothesis. The single-associate 

hypothesis states that preference for a visual texture is best predicted by the valence of the single 

object that the texture is most associated with. The namesake hypothesis states that preference 

for a visual texture is best predicted by the valence of the namesake object that produced the 
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visual texture. So, for example, one of the visual textures used was a close-up of a strawberry 

(see Figure 2). The ecological valence theory predicts that preference for this texture is best 

explained by the weighted average valence ratings for all descriptions ascribed to this texture 

(e.g., ‘beans’, ‘flowers’, ‘eggs’, ‘peacock tail’, ‘seeds’, ‘strawberry’, ‘insect eyes’, etc.); the 

single-associate hypothesis predicts that preference for this texture is best explained by the 

average valence of the description ‘eggs,’ since this was the description most often associated 

with the texture; and the namesake hypothesis predicts that preference for this texture  is best 

explained by the average valence of the description ‘strawberry,’ since this is the namesake 

object that the texture was produced from. 

Comparing to the computational models. After testing the single-associate and 

namesake hypotheses, we also compared the results of the ecological valence model to the 

computational model of Thumfart et al. (2011). First, we compared the error of the ecological 

model to the error of Thumfart et al.’s model using an error term that punishes the model for 

complexity (see Equation 2 and Appendix B). Then, we tested Thumfart et al.’s model more 

directly.  

Thumfart et al. found that preference for a given visual texture was best predicted by a 

linear equation with six factors: (1) how “premium” it looks, (2) how “sophisticated” it looks, (3) 

how “rough” it looks
5
, (4) how “woodlike” it looks, (5) the skewness of the distribution of 

Fourier energy in concentric rings in the Fourier power spectrum of the texture (cSkew), and (6) 

the strength of the texture, a computational feature derived from the neighborhood graytone 

difference matrix for the texture. Thus, we had participants rate textures on line-mark rating 

                                                 
5
 Thumfart et al. actually used a computational feature termed roughness by Tamura et al. (1978). However, Tamura 

et al. designed the feature roughness to match human ratings of Rough-Smooth as closely as possible. Furthermore, 

we found that using the feature roughness in lieu of ratings of Rough-Smooth did not change our results (see Results 

and Discussion section).  
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scales for each of the antonym pairs described above (NotPremium-Premium, NotSophisticated-

Sophisticated, Rough-Smooth, and NotWood-Wood), and we calculated their cSkew and their 

strength. We recruited two groups of participants: one group rated the textures on the scales for 

premium, sophisticated, and rough, and the other group rated the textures on the scale for 

woodlike.  

Review. Table 1 gives an overview of the different models and hypotheses tested in this 

paper.  

Table 1. Tested Models and Hypotheses 

 

 

Materials and Methods 

Participants 

There were six separate groups of participants, all of whom were undergraduate students 

at the University of California, Irvine and received course credit for participation. No participant 
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ever participated in more than one experimental task (see Table 2 for an overview of the six 

groups of participants and their different tasks).  

36 participants (19 male) took part in the texture-preference rating task, rating how much 

they liked each visual texture. The mean age was 20.8 years (range 18-28 years).  

32 participants (15 male) took part in the object-description task, describing objects 

associated with each visual texture. Once all of the descriptions were consolidated (see 

Procedure section), one of the authors (K. Stephens) rated how well he thought the descriptions 

matched the visual textures they were ascribed to on a 0-100 line-mark scale. We ended up 

excluding one female participant because 38 of her descriptions were given a 0 match-rating by 

this author (this was 4.5 standard deviations above the mean number of 0 match-ratings for the 

rest of the group). After excluding this participant, the mean age was 21.6 years (range 18-37 

years).   

37 participants (18 males) took part in the description-valence rating task, rating how 

positive or negative they felt about each object description. The mean age was 20.7 years (range 

18-32 years).  

27 (14 male) participants took part in the texture-description match rating task, rating 

how well each description matched the texture it was ascribed to. We excluded one male 

participant because he did not finish the experiment (we lost connection to our Matlab license 

three-quarters of the way through). After excluding this participant, the mean age was 22.5 years 

(range 18-40 years).  

24 (11 male) participants took part in the first aesthetic-property rating task, rating how 

“premium”, “sophisticated”, and “rough” the textures looked. The mean age was 21.1 years 

(range 18-36 years).  
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Finally, 22 (6 male) participants took part in the second aesthetic-property rating task, 

rating how “woodlike” the textures looked. We excluded one female participant because her 

mean reaction time was more than 2 standard deviations faster than the mean for the group. After 

excluding this participant, the mean age was 20.7 years (range 18-34 years).  

Stimuli 

Texture-preference rating, object description, and aesthetic-property rating. For 

these tasks the stimuli consisted of 62 different visual textures. 52 of these textures were from 

Brodatz’s (1966) album, and 10 were from shutterstock.com. We used the same Brodatz textures 

as those used by Rao and Lohse (1993, 1996), excluding D43, D75, D102, and D108 (see tables 

in the Appendix for a complete list). Of the Shutterstock images, eight were chosen specifically 

to have either high valence (chocolate, fresh lettuce, fresh strawberry, sea/ocean) or low valence 

(mud, mold, rotten strawberry, infected skin); the remaining two images were Gaussian blurred 

versions of the chocolate and the mud images respectively. All images were grayscale and 

viewed at 256-by-256 pixels (see Figure 2 for the Shutterstock images; see tables in the appendix 

for a complete list of all visual textures. See Brodatz, 1966 or Rao & Lohse, 1993 for pictures of 

the Brodatz textures).  

Texture-description match rating. Because of the large number of descriptions for each 

texture (even after consolidation; see Procedure section), it would have taken too long to show 

participants all texture-description pairs for all 62 textures in the texture-description match rating 

task. Thus, we only included 47 of the original 62 textures in this task. We included all 10 of the 

shutterstock.com images, but only 37 of the original 52 Brodatz textures. We chose which 15 

Brodatz textures to exclude (D11, D25, D29, D31, D39, D40, D42, D55, D63, D80, D82, D83, 
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D89, D94, D101) based on their similarity to other textures already included (see table A1 in the 

appendix for a complete list of all visual textures used in this experiment).   

Description-valence rating. For the description-valence rating task, the stimuli consisted 

of black text presented in 28-point Arial font.  

 

Figure 2. The ten visual textures from Shutterstock used for all tasks. The rightmost pictures are 

Gaussian-blurred versions of the preceding pictures. From top left to bottom right: lettuce, 

strawberry, tropical ocean, chocolate, Gaussian-blurred chocolate, mold, rotted strawberry, skin 

infection, mud, Gaussian-blurred mud.  

 

Displays 

Monitor for visual textures. For any task displaying visual textures (i.e., the texture-

preference rating, object description, texture-object match rating, and aesthetic-property rating 

tasks), stimuli were presented using an 27-inch Apple iMac display set at a resolution of 

2560x1440 and a refresh rate of 60Hz. All stimuli were presented against a neutral gray 

background with luminance 28.8 cd/m
2 

(as measured using Photo Research PR-670 

spectroradiometer). The monitor was calibrated using an X-Rite ColorMunki Photo 

spectrophotometer. Participants were all run in the same room, one at a time.  
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Monitor for descriptions. For the task displaying only text (i.e., the description-valence 

rating task), stimuli were presented using Dell computers attached to 17-inch Dell LCD monitors 

set at a resolution of 1280x1024 and a refresh rate of 60Hz. The text stimuli were displayed 

against a white background. Participants were run in groups of one to five in a room containing 8 

computers.  

Line-mark rating scale. Five of the tasks – the texture-preference rating, description-

valence rating, texture-description matching rating, and aesthetic-property rating tasks – gathered 

ratings using a line-mark rating scale, located at the bottom of the display. This scale consisted of 

a dark-gray rectangular box demarcated into 10 equally spaced regions (5 below the center point 

and 5 above), with text above the scale indicating what rating was being performed (e.g., “How 

much do you like this texture?”), text at the end-points of the scale to indicate the extreme ratings 

(e.g., “not at all” vs. “very much”), and a black slider bar that participants could slide along the 

scale with the mouse to indicate their rating. Participants could either click and drag the slider 

bar or move the bar by pointing and clicking (i.e., without dragging). When displayed on the 

larger monitor (i.e., for the texture-preference rating, texture-object match rating, and aesthetic-

property rating tasks), the top edge of the question text was approximately 247 pixels below the 

bottom edge of the texture, the rating scale was 768 pixels wide by 72 pixels high, and the 

scale’s top edge was approximately 41 pixels below the bottom edge of the question text. When 

displayed on the smaller monitor (i.e., for the description-preference rating task), the rating scale 

was made smaller – 384 pixels wide by 52 pixels high – in proportion to the smaller resolution of 

the screen. The black slider bar was always 6 pixels wide by the height of the scale (either 72 or 

52 pixels), and all text was black, in 24-point Arial font. The scale and the question text were 

always horizontally centered. The code for all tasks using a line-mark rating scale was written in 
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Matlab, using the Psychophysics Toolbox extensions (Brainard, 1997; Kleiner, Brainard, & Pelli, 

2007).    

Description edit boxes. The object-description task gathered descriptions using edit 

boxes located below the textures. There were five edit boxes in total, where participants could 

click and enter text. The edit boxes were 200 pixels wide by 50 pixels high and were located 

approximately 137 pixels below the bottom edge of the texture. They were horizontally centered 

and evenly spaced approximately 123 pixels apart from one another. Below the edit boxes was a 

pushbutton labeled ‘submit’ where participants could click to input their responses and move on 

to the next trial. This pushbutton was 150 pixels wide by 50 pixels high, horizontally centered, 

and the top edge was approximately 96 pixels below the bottom edge of the edit boxes.  The 

code for this task was written using Matlab’s uicontrol functions. 

Procedure 

The present study included five between-subject tasks: (i) texture-preference rating, (ii) 

object description, (iii) description-valence rating, (iv) texture-description match rating, and (v) 

aesthetic-property rating (see Table 2). For all tasks, there was a blank 500ms ISI in between 

trials, and participants sat approximately 60cm away from the monitor. At this viewing distance, 

the visual textures spanned approximately 5.7 degrees of visual angle.  

Texture-preference rating task. On each trial, participants viewed one of the 62 visual 

textures, vertically and horizontally centered on a neutral gray background with the text “How 

much do you like this texture?” displayed below the texture. Participants indicated their 

preference using a line-mark rating scale labeled “not at all” on the left end (coded as -100) and 

“very much” on the right end (coded as +100). Participants used the mouse to indicate their 
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preference. They pressed the spacebar to input their rating and move on to the next texture. The 

textures were displayed in random order and all participants gave ratings for all textures.  

Object description task. Participants saw each texture individually against a neutral gray 

background and were instructed to type out as many objects as they could think of (up to five) 

that might describe or be associated with the given visual texture. They were instructed not to 

name adjectives (e.g., ‘heavy,’ ‘light,’ ‘furry’), abstract entities (e.g., ‘dreams,’ ‘hopes,’ ‘fears’), 

or objects that would not be known to other people (e.g., ‘my aunt’s blanket’). They were also 

told that the experimenters were interested in all associated objects, whether pleasant or 

unpleasant. They typed their responses into one of five edit boxes located below the texture on 

the screen and clicked a pushbutton  labeled ‘submit’ to move on to the next texture once they 

were satisfied with their descriptions. They were not given a time-limit. The textures were 

displayed in random order and all participants gave descriptions for all 62 textures.  

After combining exact repeats, we were left with 1,264 unique descriptions (from an 

initial total of 4,858). We compiled these descriptions into a single list of 206 items using a 

procedure similar to that of Palmer and Schloss (2010). First, we discarded items from the list if 

they: (i) were abstract concepts instead of objects (e.g., ‘anger’, ‘dream’, ‘joy’); (ii) were 

adjectives instead of objects (e.g., ‘big’, ‘bumpy’, ‘blurry’, ‘curvy’, ‘dark’, ‘heavy’); or (iii) were 

ambiguous or could describe many different things (e.g., ‘arrangement’, ‘game’, ‘layers’, 

‘material’, ‘mixture’, ‘surface’, ‘painting’). We excluded 366 descriptions this way, leaving 898 

items on the list. We then categorized the descriptions to reduce the number that needed to be 

rated in the description-preference rating and the texture-object match rating tasks. We combined 

descriptions into a single object category if they seemed to refer to the same object (e.g., 

‘blanket’, ‘quilt’ and ‘piece of a blanket’; ‘beehive’, ‘bee’s nest’ and ‘bee cells’; ‘carpet’, 
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‘carpret [sic.]’ and ‘rug’) and, in certain cases, we combined descriptions into superordinate 

categories if there were several exemplars referring to the same type of object. In the latter case, 

exemplars were included in the category description (e.g., ‘bedding (covers, sheets, pillows)’; 

‘bricks (brick wall, brick building, brick sidewalk)’; ‘reptile skin (snake, crocodile, lizard)’). 

Descriptions were further excluded if they were given by only one person for only one image and 

they didn’t fit into any other object categories. After this process, we ended up with the final list 

of 206 consolidated object descriptions.  

Even after this consolidation, each texture still had, on average, 20.4 descriptions 

attributed to it. With this many texture-description pairings, the texture-description matching task 

would have been too long (even after pairing the textures down from 62 to 47), so two 

independent raters ran a preliminary version of the texture-description match rating task and we 

excluded any texture-descriptions pairings that were given by only one participant and assigned a 

0 match rating by both independent raters. After this procedure, the textures had an average of 

18.4 descriptions each.  

Description-valence rating task. Following Palmer and Schloss (2010), participants 

were first given a list of 8 sample items (sunset, bananas, diarrhea, sidewalk, boogers/snot, wine 

(red), chalkboard, chocolate) to give them an idea of the range of descriptions they would see. 

They were then presented with each of the 206 consolidated descriptions in black text, 

horizontally and vertically centered against a white background. The procedure was the same as 

for the texture-preference rating task, but the instruction text was different. Below each 

description was the text, “What’s your emotional reaction to the object(s)/thing described 

above?” and participants indicated their rating using a line-mark rating scale labeled “negative” 
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on the left end (coded as -100) and “positive” on the right end (coded as +100). The descriptions 

were displayed in random order and all participants gave ratings for all descriptions.  

Texture-description match rating task. Because of the large number of texture-

description pairings, we used only 47 of the original 62 visual textures in this task to keep it from 

being too long. We chose which textures to exclude based on their similarity to other textures 

already included (see Stimuli section). On each trial, participants viewed one of the 47 textures 

along with one of the descriptions ascribed to that texture against a neutral gray background. The 

description was displayed in black, 28-point Arial font, horizontally centered, approximately 110 

pixels above the top edge of the texture. Below each texture-description pairing was a line-mark 

rating scale with the text “How well does this description match the image?” The scale was 

labeled “very poorly” on the left end (coded as 0) and “very well” on the right end (coded as 1). 

Participants saw all possible parings of texture images and descriptions ascribed to those 

textures. We split the participants for this experiment into two groups: One group saw the same 

description for all textures given that description before moving on to the next description, and 

the other group saw the same texture for all descriptions given to that texture before moving on 

to the next texture. The order of the descriptions and the textures was randomized.   

Aesthetic-property rating tasks. Participants viewed each of the 62 visual textures, one 

at a time, against a neutral gray background with the text “This texture looks:” displayed below 

the texture. They indicated their rating for the requested aesthetic property using a line-mark 

rating scale coded from -100 to +100.  

For the first aesthetic-property rating task, participants rated the textures on three 

different antonym pairs: NotPremium-Premium, NotSophisticated-Sophisticated, and Rough-

Smooth. The experiment was blocked so that participants rated all textures on one aesthetic 
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property before moving on to the next, and they were given a short break between blocks. The 

order of the aesthetic properties was randomized as was the order of the textures within a block.  

The second aesthetic-property rating experiment was identical to the first, except that 

participants rated the textures on only one antonym pair:  NotWood-Wood. 

Review 

Table 2 gives an overview the six groups of participants and their experimental tasks.  

Table 2. Participants and their Experimental Tasks 

 

 

Results and Discussion 

We first describe participants’ texture preference ratings for the 47 visual textures used in 

all tasks. We then test the ecological valence hypothesis for these textures, namely that texture 

preferences can be explained by the combined valence of all objects associated with the textures. 
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Next, we test this account against the single-associate and namesake hypotheses. Finally, we fit 

the model of Thumfart et al. (2011) and compare the results of this model to those of the 

ecological valence model.  

Texture preferences  

We used Cronbach’s coefficient alpha (Cronbach, 1951; see also, Ritter, 2010) to assess 

interrater reliability for texture-preference ratings. Reliability was high (0.83), so we averaged 

across participants to get mean preference ratings.  Figure 3 shows the mean preference ratings 

for the 47 visual textures used in all experiments (see table A2 in the appendix for preference 

ratings for the other 15 visual textures used in this experiment). The most preferred textures 

included clouds, lettuce, lace, and tropical sea. The least preferred textures were the two blurred 

images, mud, and rotted strawberry. 
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Figure 3. Average texture-preference ratings (𝑦-axis) for each of 47 visual textures (𝑥-axis). For Brodatz textures, Brodatz’s (1966) 

identifier is given in parentheses, and the labels are his descriptions. For the other textures, the labels come from the Shutterstock 

search terms that produced the images. Error bars represent the standard errors of the means.    
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Testing the ecological account of texture preferences 

We used Cronbach’s coefficient alpha to assess interrater reliability separately for the 

groups that rated description-valence and description-texture matching. Reliability was high for 

these groups (0.96, 0.99), so we averaged across participants to obtain mean valence-ratings for 

each description (𝑣𝑑) and mean match-ratings
6
 for each texture-description pairing (𝑤𝑡𝑑). Using 

these ratings along with the consolidated descriptions from the object description task, we were 

able to predict preference ratings for the each texture using Equation 1.  

Figure 4 shows the strong positive correlation (𝑟 = 0.79, 𝑝 < .001) between the 

measured texture preferences, averaged across participants, and the preferences as predicted by 

Equation 1. This indicates that people like textures that remind them of positive objects and 

dislike textures that remind them of negative objects, and it supports the ecological valence 

hypothesis. It is also worth noting that the prediction equation accounted for less variance if we 

either dropped the normalizing term 1/𝑛𝑡 (𝑟 = 0.66), or set all of the non-zero weights (𝑤𝑡𝑑’s) 

to 1 (𝑟 = .72).  

                                                 
6
 Recall that we split the participants in the texture-description match rating task into two groups: both groups saw 

all pairings of textures and descriptions ascribed to those textures, but one group saw the same description for all 

textures given that description before moving on to the next description, and the other group saw the same texture 

for all descriptions given to that texture before moving on to the next texture. The latter group went significantly 

slower (mean difference in reaction time per trial = 2.05 𝑠𝑒𝑐, 𝑡(24) = 10.36, 𝑝 < .001), but, as Cronbach’s alpha 

indicates, the groups’ ratings were in strong agreement, and using data from either group led to the same correlation 

coefficient.  
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Figure 4. For a set of 47 visual textures, shows the correlation (𝑟 = 0.79, 𝑝 < .001) between 

measured preferences, averaged across participants, and the preferences predicted by Equation 1. 

Numbers represent ratings on a line-mark rating scale, where -100 indicates that the texture is 

liked “not at all” and +100 indicates that it is liked “very much.”  

 

The main problem with the predicted ratings is that their range is compressed compared 

to the measured ratings and that most of the predicted ratings are positive while many of the 

measured ratings are negative. Palmer, Schloss and colleagues reported similar issues when 

predicting color preferences (Palmer & Schloss, 2010) and odor preferences (Schloss et al., 

2015). To explain why the model underpredicts negative ratings, they hypothesized that 

participants in the object-description group either underreport negative objects because they are 

too shy to report gross or disgusting things, or they are just biased toward generating/thinking 

about positive objects. To explain why the ratings for the prediction are compressed relative to 

the measured ratings, we posit that people likely have weaker feelings about text describing 

objects than they have about actual images.  
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Despite these failings, the model does reasonably well: The predictions account for 

62.5% of the variance in measured preference with a single predictor.  

Evaluating the single-associate hypothesis 

We tested the single-associate hypothesis by first identifying the object named most 

frequently for each visual texture (see table A1 in the Appendix). We then calculated the 

correlation between average preference ratings for the 47 visual textures and average valence 

ratings for the most frequently named objects. Although there was a significant positive 

correlation (𝑟 = 0.47, 𝑝 < .001), it was weaker than the relation between measured preferences 

and preferences predicted by Equation 1 (correlations compared using the Fisher 𝑟-to- 𝑧 

transformation: 𝑧 = 2.63, 𝑝 = .01). Therefore, texture preferences were better predicted by a 

summary statistic of valence for all objects associated with a texture than by valence for the 

single object most frequently associated with a texture.  

It is also worth noting that, although the valence of the most frequent description did not 

predict texture preference better than the valence of all associated descriptions, texture 

preference was negatively correlated with the number of descriptions (𝑟 = −0.67, 𝑝 < .001), so 

that the textures with fewer descriptions were better liked. Taylor and Franklin (2012) found this 

to be the case with colors as well, but Schloss et al. (in press) did not, nor did Schloss et al. 

(2015) find this with odors. On average, each texture had 18.4 descriptions associated with it 

(range = 6-34).  

Evaluating the namesake hypothesis 

We tested the namesake hypothesis by first identifying the “namesake” object for each 

visual texture, that is, the object from which the texture image was created. We then calculated 
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the correlation between average preference ratings for the visual textures and average valence 

ratings for the namesake objects.  

To identify the namesake objects, we chose the consolidated description that was closest 

either to Brodatz’ (1966) description (for the Brodatz textures) or to the Shutterstock search term 

that produced the image (for the Shutterstock textures).  The matches were not always exact, but 

were reasonably close. For example, Brodatz described texture D37 as “water,” but we used 

“ocean/sea” as the namesake object. Similarly, one of the Shutterstock textures was produced 

from the search term “rotten strawberry,” but we used “rotten/spoiled food” as the namesake 

object (see table A1 in the appendix for more details). We excluded texture D32 because nothing 

close to Brodatz’ description for the texture (pressed cork/corkboard) was ever given as an object 

description and thus D32’s namesake was never given a valence rating. We also excluded the 

two Gaussian blurred visual textures because the namesake objects for these textures would be 

too difficult to visually determine. Thus, overall, the correlation was based on ratings for 44 of 

the visual textures.   

Although there was a significant positive correlation (𝑟 = 0.60, 𝑝 < .001), it was weaker 

than the relation between measured preferences and preferences predicted by Equation 1 (with 

the 44 textures: 𝑟 = 0.82, 𝑝 < .001; correlations compared using the Fisher 𝑟-to- 𝑧 

transformation: 𝑧 = 2.10, 𝑝 = .04). Thus texture preferences were better predicted by the 

average valence over all objects associated with that texture than by the valence of the namesake 

object that produced the texture.
7
  

                                                 
7
 When reading a preliminary version of this manuscript, Charlie Chubb pointed out that the namesake hypothesis 

still explains a good amount of the variance considering it has a significant additional constraint. The problem with 

comparing the namesake hypothesis model to the full EVT model is that both models lack parameters so there’s no 

way to quantify this additional constraint (i.e., the models can’t be compared with a traditional methodology such as 

a likelihood ratio). This problem also arises when comparing the single-associate hypothesis model to the full EVT 

model.   
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Comparing to the computational model of Thumfart et al. 

While the ecological model accounted for 62.5% of the variance in texture preference 

ratings, the accuracy of this prediction was not nearly as good as that provided by the 

computational model of Thumfart et al. (2011) and Liu et al. (2015), the latter of which claimed 

to account for as much as 99% of the variance in human preference ratings.  However, the 

ecological model utilized only a single predictor, whereas the models of Thumfart et al. and Liu 

et al. utilized 6 and 5 predictors respectively. Since Thumfart et al. optimized their model using 

an error measure that punished the model for complexity (i.e., number of predictors), we were 

able to compare the results of the ecological model to the results of Thumfart et al.’s model, 

taking into account the lower complexity of the ecological model. The punished error measure 

was a convex combination of the following form (see Appendix B for more details):  

 𝐸𝑟𝑟𝑜𝑟𝑝𝑢𝑛𝑖𝑠ℎ𝑒𝑑 = 𝛼 × 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + (1 − 𝛼) × 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (1) 

with 𝛼 in the range [0,1]. Thus, the parameter 𝛼 controls the ratio of accuracy versus complexity, 

with lower complexity emphasized for decreasing values of 𝛼. Using this formulation, we found 

that the punished error for the ecological model matched that of Thumfart et al.’s model when 

𝛼 = 0.35 (see Appendix B). Thus, although the ecological model is less accurate than Thumfart 

et al.’s model, it has comparable performance when the modeler values low complexity over 

high accuracy. We were unable to make such a comparison with Liu et al.’s model since they did 

not work with a punished error term.  

We also tested Thumfart et al.’s model more directly by measuring the six factors in their 

final texture-preference prediction equation:  (1) how “premium” a texture looks, (2) how 

“sophisticated” a texture looks, (3) how “rough” a texture looks, (4) how “woodlike” a texture 

looks, (5) the skewness of the distribution of Fourier energy in concentric rings in the Fourier 
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power spectrum of a texture (cSkew), and (6) the strength, a computational feature derived from 

the neighborhood graytone difference matrix of a texture (see Table 1). We gathered ratings for 

“premium,” “sophisticated,” “rough” and “woodlike” in the aesthetic-property ratings tasks, and 

we measured the computational features cSkew and strength following Thumfart et al. (2011) 

and Amadasun and King (1988) respectively. We used Cronbach’s coefficient alpha to assess 

interrater reliability separately for ratings of “premium”, “sophisticated”, “rough”, and 

“woodlike,” Reliability was generally high for all rating scales (0.76, 0.81, 0.75, and 0.93 

respectively), so we averaged across participants and used the average ratings as predictors for 

each texture.  

 A multiple linear regression revealed that “premium” was the only significant predictor 

(Full Model: 𝐹(6,40) = 12.2, 𝑝 < .001, multiple-𝑅2 = 0.65; Premium: 𝑡(40) = 7.56, 𝑝 <

.001). Interestingly though, how “premium” a texture looks accounted for 62.3% of the variance 

in texture preference ratings (𝑟 = 0.79, 𝑝 < .001), almost identical to the variance accounted for 

by the ecological valence model. Furthermore, “premium” seemed to track better with preference 

than the ecological predictions since it was not compressed relative to preference, nor was it 

inflated in the positive direction (see Figure 5). We hypothesize that this is simply because 

participants in our experiment viewed Dislike-Like as synonymous with NotPremium-Premium.  
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Figure 5. For a set of 47 visual textures, shows the correlation (𝑟 = 0.79, 𝑝 < .001) between 

measured preferences and measured premiumness, averaged across participants.  Numbers 

represent ratings on a line-mark rating scale, where -100 indicates that the texture is liked “not at 

all” or is “not premium” and +100 indicates that it is liked “very much” or is “premium.”  

 

We should also note that this is not necessarily a critique on Thumfart et al.’s model since 

they did not intend the model to be tested in this way. In personal communication, S. Thumfart 

indicated that they intended only to investigate the feature set as a whole (i.e., all 188 

computational features + 27 aesthetic antonym pairs) and that any particular equation from the 

paper may not necessarily be applicable to other samples of textures. 

Finally, we did not explicitly test Liu et al.’s instantiation of the model, but we note that 

they found the aesthetic property Mussy-Harmonious to be an important predictor of preference, 

and we hypothesize that, as with NotPremium-Premium, Mussy-Harmonious may serve as a 

synonym for Dislike-Like. Indeed, there is evidence that this may be the case since “preference” 

and “harmony” are often conflated in color research (for discussion, see Palmer et al., 2013).  
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General Discussion 

The goal of the present study was to test whether the ecological valence theory – already 

used to explain color preferences (Palmer & Schloss, 2010) and odor preferences (Schloss et al., 

2015) – could be extend to account for people’s preferences for visual textures. The theory posits 

that preference for a given stimulus is determined by the combined valence of all objects 

associated with that stimulus, and that those preferences steer organisms to approach beneficial 

outcomes and avoid harmful ones (Palmer & Schloss, 2010; Schloss et al., 2015). We found 

support for the theory for visual textures: The combined valence of all objects associated with a 

set of visual textures accounted for 62.5% of the variance in texture preference ratings, which 

was more than was explained by the valence of the single most-frequently associated object for 

each texture or by the valence of the single namesake object that produced each texture.  

While this prediction accuracy is reasonable, the model did better explaining average 

preferences for colors (where it accounted for 80% of the variance; Palmer & Schloss, 2010) and 

odors (where it accounted for 76% of the variance; Schloss et al., 2015). This may seem curious, 

especially when compared to the model’s performance for colors: Looking at the visual textures 

in Figure 2, one might reason that it should be more obvious what objects are associated with 

these textures than with a set of uniformly-colored images, so the model should perform better 

for visual textures than for colors. However, the objects associated with each visual texture were 

not as obvious as one would think: Each texture had an average of 18 descriptions associated 

with it. Furthermore, visual textures are not homogeneous fields like colors, and other factors 

such as composition, style or context likely play a role in determining preferences for visual 

textures (for review, see Palmer et al., 2013). 
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The prediction accuracy of the ecological valence model also pales in comparison to the 

computational models of Thumfart et al. (2011) and Liu et al. (2015) – the latter of which claims 

to account for as much as 99% of the variance in texture preference ratings – although we found 

that the ecological valence model performs similarly to Thumfart et al.’s model when one uses 

an optimization measure that emphasizes lower complexity (the ecological model has only 1 

predictor; Thumfart et al.’s model has 6). One problem with the computational models is their 

use of some aesthetic properties that participants may interpret as synonymous with preference 

(e.g., NotPremium-Premium for Thumfart et al., Mussy-Harmonious for Liu et al.). Still, for 

practical applications (e.g., in marketing or advertising), a computational model like Thumfart et 

al.’s or Liu et al.’s is preferable not only because of the increase in prediction accuracy, but also 

because the end result of such a model is able to predict texture preference for novel images 

based only on computational features measured from the images (i.e., with no human 

intervention). While the ecological valence model has low complexity in a statistical sense – it 

only uses one predictor – it has high complexity in a pragmatic sense – computing that single 

predictor requires a lot of experimentation.   

The real benefit of the ecological valence theory is as a theoretical tool. The 

computational model of Liu et al. (2015) may be able to account for 99% of the variance in 

human texture-preference, but it utilizes predictors that have no theoretical significance. For 

example three of the predictors in their equation for texture preference come from a set of 20 

features which were generated from a larger set of 106 computational features whose 

dimensionality was reduced using stochastic neighbor embedding. Because of the nature of this 

reduction technique, these features don’t even have a clear physical interpretation (unlike the 

starting 106 computational features) let alone a compelling theoretical one. The ecological 
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valence theory, on the other hand, stems from a basic, evolutionarily-inspired premise: An 

observer’s preferences for low-level stimuli should be driven by the real-world objects those 

stimuli are most associated with, and how harmful or beneficial those objects are to the observer.  

This premise leads to an entire theory of preferences (i.e., the ecological valence theory) and 

generates testable predictions.  

The main limitation of the present study was the range of visual textures used. We used 

only 63 visual textures (only 47 for prediction), most of which were Brodatz textures, and all of 

which were naturalistic and grayscale. This set of visual textures does not span the range of 

possibility, and it could be the case that the ecological valence model performs poorly for 

abstract, non-natural textures. Furthermore, it is known that adding color to a visual texture 

affects a person’s emotional response to that texture (e.g., Lucassen, Gevers, & Gijsenij, 2010). 

Any future study should utilize a more complete set of textures, perhaps sampling from a range 

of texture databases (as in, e.g., Thumfart, Heidl, Scharinger, & Eitzinger, 2009).    

In sum, we conclude that – despite the limitations and although there are likely other 

mechanisms at play – it is reasonable to think of a person’s preference for a visual texture as a 

summary statistic of how they feel about all the objects associated with that texture.  
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Appendix A 

Table A1shows all of the information needed to run the calculations in this paper for the 

47 visual textures that we predicted preferences for. Table A2 shows information for the 

remaining 15 textures whose preferences we did not predict. The title (first column for both 

tables) of each texture is either the description given by Brodatz (1966), with his numbering in 

parentheses, or the search term that produced the image on Shutterstock.  
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Table A1. For the 47 visual textures whose preference was predicted, shows the average preference rating, rating predicted by the 

ecological valence theory, number of descriptions, average premium rating, most frequently associated object description with its 

average valence rating, and namesake description with its average valence rating. All rating scales vary from -100 to +100. Note: there 

is no valence rating for pressed cork because it was not listed during the object description task, and the blurred chocolate and mud 

were not given namesake descriptions. 

 

Visual Texture Preference Ecological Prediction nDescriptions Premium Most Frequent Description (MFD) Valence of MFD Namesake Description (ND) Valence of  ND

wire mesh (D1) 2.46 2.05 17 14.77 fence / gate 8.67 wire mesh -13.33

crocodile skin (D10) -27.65 1.10 29 -7.98 reptile skin (snake, crocodile, lizard) -25.66 reptile skin (snake, crocodile, lizard) -25.66

Japanese rice paper (D107) -11.96 3.99 24 -31.49 branches / roots (of a tree) 15.86 paper 25.66

grassy fiber (D110) -9.16 6.44 16 -25.24 grass 31.57 grass 31.57

plastic bubbles (D112) -16.52 5.31 24 -5.72 bee hive -29.03 bubbles 35.6

straw (D15) 10.7 9.24 14 -34.35 grass 31.57 straw 10.94

raffia weave (D18) 21.64 11.44 21 -15.65 woven basket 20.31 woven basket 20.31

beach pebbles (D23) 31.31 20.13 12 7.75 rocks / pebbles / stones 22.35 rocks/pebbles/stones 22.35

brick wall (D26) 19.21 6.28 6 -6.41 bricks (brick wall / brick building / brick sidewalk) 4.42 bricks (brick wall / brick building / brick sidewalk) 4.42

reptile skin (D3) -26.96 1.72 25 3.99 reptile skin (snake, crocodile, lizard) -25.66 reptile skin (snake, crocodile, lizard) -25.66

beach pebbles (D30) 32.32 12.90 13 21.21 rocks / pebbles / stones 22.35 rocks/pebbles/stones 22.35

pressed cork (D32) 2.76 4.43 22 -28.99 wall of a house / building 13.02 pressed cork --

netting (D34) -6 2.07 21 -6.64 net / netting -6.08 net / netting -6.08

water (D37) 26.7 24.46 9 14.85 ocean / sea 67.34 ocean / sea 67.34

lace (D41) 38.29 28.34 17 35.32 flowers 59.28 lace / embroidery 35.15

mica (D5) 6.13 13.64 14 -17.51 rocks / pebbles / stones 22.35 wall of a house / building 13.02

raffia woven with cotton (D50) 14.74 11.55 12 -10.07 tree bark 12.47 cloth / fabric 27.49

oriental straw cloth (D52) -6.85 7.61 19 -17.04 cloth / fabric 27.49 cloth / fabric 27.49

handmade paper (D57) -10.11 8.64 20 -29.71 wall of a house / building 13.02 paper 25.66

European marble (D58) -12.87 -0.12 26 -28.28 ocean / sea 67.34 granite / marble 31.39

European marble (D61) -15.84 4.76 24 -8.30 rocks / pebbles / stones 22.35 granite / marble 31.39

European marble (D62) 0.62 14.52 14 0.89 rocks / pebbles / stones 22.35 granite / marble 31.39

handwoven rattan (D64) 30.31 10.30 16 8.39 woven basket 20.31 woven basket 20.31

wood grain (D69) 19.19 13.40 11 28.18 tree bark 12.47 wood 28.52

wood grain (D71) 22.48 10.48 18 24.25 wood 28.52 wood 28.52

tree stump (D72) 19.39 13.01 6 -4.79 tree bark 12.47 tree bark 12.47

soap bubbles (D73) -16.19 4.18 34 -32.20 bubbles 35.6 bubbles 35.6

coffee beans (D74) 13.69 13.04 12 17.61 coffee beans 40.37 coffee beans 40.37

Oriental straw cloth (D78) 10.15 14.26 18 -21.13 wood 28.52 cloth / fabric 27.49

ceiling tile (D86) -17.99 5.65 22 -39.24 wall of a house / building 13.02 wall of a house / building 13.02

fossilized sea fan with coral (D87) -2.99 6.94 23 -4.01 leaves 34.87 coral / coral reef 42.84

dried hop flowers (D88) 10.15 8.11 20 1.24 insects / bugs -35.54 flowers 59.28

grass lawn (D9) -21.42 2.72 21 -41.91 grass 31.57 grass 31.57

clouds (D90) 0.83 3.49 16 6.46 clouds 61.82 clouds 61.82

clouds (D91) 63.88 22.74 8 27.75 clouds 61.82 clouds 61.82

fur, hide of unborn calf (D93) 10.78 5.47 6 5.47 animal fur (e.g., dog, cat) 6.69 animal fur (e.g., dog, cat) 6.69

crushed rose quartz (D98) 18.11 12.65 16 8.60 rocks / pebbles / stones 22.35 crystals / diamonds / gems 52.46

chocolate spread 28.67 10.07 20 38.47 chocolate 61.7 chocolate 61.7

chocolate (Gaussian blurred) -54.01 4.17 21 -43.37 X-ray / ultrasound -1.04 -- --

mud -51.91 -1.52 23 -49.88 mud -21.09 mud -21.09

mud (Gaussian blurred) -66.27 1.64 21 -63.15 people 40.24 -- --

lettuce 49.81 22.30 15 34.32 flowers 59.28 lettuce 37.99

mold -23.27 1.50 29 -41.54 dirt / gravel / soil -9.74 mold -66.16

rotted strawberry -48.37 -0.27 27 -25.08 beans 8.09 rotten / spoiled food -74.77

strawberry -12.57 9.31 27 1.84 eggs 33.25 strawberry 49.51

infected skin -26.48 0.78 28 -17.61 ocean / sea 67.34 infection -71.47

tropical sea 36.73 31.83 9 30.20 ocean / sea 67.34 ocean / sea 67.34
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Table A2. For the 15 visual textures whose preference was not predicted, shows the average 

preference rating, number of descriptions, average premium rating, and most frequently 

associated object description with its average valence rating. All rating scales vary from -100 to 

+100.  

 

 

 

Appendix B 

Equation B1gives the details for Equation 2 in the paper and is adapted from Thumfart et 

al. (2011):  

 
𝑀𝐴𝐸𝑝𝑢𝑛𝑖𝑠ℎ𝑒𝑑 = 𝛼

𝑀𝐴𝐸

𝑟𝑎𝑛𝑔𝑒(𝑀𝐴𝐸)
+ (1 − 𝛼) ×

𝑀𝑜𝑑𝑒𝑙𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

max (𝑀𝑜𝑑𝑒𝑙𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)
 (B1) 

where 𝑀𝐴𝐸 stands for “mean absolute error.” For a given visual texture, the absolute error is the 

absolute value of the difference between the measured and predicted preferences for that texture. 

Averaging the absolute error across all textures gives the mean absolute error, and subtracting 

the maximum absolute error from the minimum gives 𝑟𝑎𝑛𝑔𝑒(𝑀𝐴𝐸). Thus, 𝑀𝐴𝐸 and 

𝑟𝑎𝑛𝑔𝑒(𝑀𝐴𝐸) could easily be computed for the ecological valence model from the data in the 

second and third columns of table A1 in Appendix A. 𝑀𝑜𝑑𝑒𝑙𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 is given by the 

number of predictors/regressors in the model. In Thumfart et al.’s model, they used up to 50 

predictors so that max(𝑀𝑜𝑑𝑒𝑙𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦) = 50.  

 

Visual Texture Preference nDescriptions Premium Most Frequent Description (MFD) Valence of MFD

woven cane (D101) 1.88 19 15.22 cloth / fabric 27.49

woolen cloth (D11) 12.13 17 -6.75 clothing (shirt / pants / sweater / jacket) 57.07

brick wall (D25) 18.43 6 -11.12 bricks (brick wall / brick building / brick sidewalk) 4.42

beach sand (D29) -5.24 17 -29.34 cement / concrete / pavement 7.43

beach pebbles (D31) 45.84 10 19.52 rocks / pebbles / stones 22.35

lace (D39) 11.18 28 7.95 flowers 59.28

lace (D40) 38.27 23 42.47 flowers 59.28

lace (D42) 35.24 23 44.54 curtain 20.1

straw matting (D55) -2.11 20 -1.38 clothing (shirt / pants / sweater / jacket) 57.07

European marble (D63) -21.67 31 -19.67 spider web -40.72

Oriental straw cloth (D80) -20.28 21 -28.33 carpet / rug 15.51

Oriental straw cloth (D82) -1.41 24 -7.00 carpet / rug 15.51

woven matting (D83) 7.91 21 -0.58 cloth / fabric 27.49

dried hop flowers (D89) -26.21 23 -8.20 insects / bugs -35.54

brick wall (D94) 31.42 5 3.01 bricks (brick wall / brick building / brick sidewalk) 4.42
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 Table B1 shows the values for 𝑀𝐴𝐸, 𝑟𝑎𝑛𝑔𝑒(𝑀𝐴𝐸), 𝑀𝑜𝑑𝑒𝑙𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, and  

max (𝑀𝑜𝑑𝑒𝑙𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦) for the ecological valence model versus Thumfart et al.’s 

computational model (Note: 𝑀𝐴𝐸 for the computational model is given in Table 3 of Thumfart 

et al., 2011, and 𝑟𝑎𝑛𝑔𝑒(𝑀𝐴𝐸) was calculated using Equation B1 after E. Lughofer indicated in 

personal communication that they used an 𝛼 value of 0.90). 

Table B1. Values for the variables in Equation B1.   

 

 Using Equation B1 and the values in Table B1, it’s straightforward to show that 

𝑀𝐴𝐸𝑝𝑢𝑛𝑖𝑠ℎ𝑒𝑑 𝐸𝑉𝑇 = 𝑀𝐴𝐸𝑝𝑢𝑛𝑖𝑠ℎ𝑒𝑑 𝑇ℎ𝑢𝑚. = 0.10 when 𝛼 = 0.35.  


